ﻻ يوجد ملخص باللغة العربية
Cells possess non-membrane-bound bodies, many of which are now understood as phase-separated condensates. One class of such condensates is composed of two polymer species, where each consists of repeated binding sites that interact in a one-to-one fashion with the binding sites of the other polymer. Previous biologically-motivated modeling of such a two-component system surprisingly revealed that phase separation is suppressed for certain combinations of numbers of binding sites. This phenomenon, dubbed the magic-number effect, occurs if the two polymers can form fully-bonded small oligomers by virtue of the number of binding sites in one polymer being an integer multiple of the number of binding sites of the other. Here we use lattice-model simulations and analytical calculations to show that this magic-number effect can be greatly enhanced if one of the polymer species has a rigid shape that allows for multiple distinct bonding conformations. Moreover, if one species is rigid, the effect is robust over a much greater range of relative concentrations of the two species. Our findings advance our understanding of the fundamental physics of two-component polymer-based phase-separation and suggest implications for biological and synthetic systems.
Lamina-associated domains (LADs) cover a large part of the human genome and are thought to play a major role in shaping the nuclear architectural landscape. Here, we perform polymer simulations, microscopy and mass spectrometry to dissect the roles p
We present a generalized Landau-Brazovskii free energy for the solidification of chiral molecules on a spherical surface in the context of the assembly of viral shells. We encounter two types of icosahedral solidification transitions. The first type
A single solid tumor, composed of nearly identical cells, exhibits heterogeneous dynamics. Cells dynamics in the core is glass-like whereas those in the periphery undergo diffusive or super-diffusive behavior. Quantification of heterogeneity using th
Stress granules (SG) are droplets of proteins and RNA that form in the cell cytoplasm during stress conditions. We consider minimal models of stress granule formation based on the mechanism of phase separation regulated by ATP-driven chemical reactio
Self-propelled particle (SPP) systems are intrinsically out of equilibrium systems, where each individual particle converts energy into work to move in a dissipative medium. When interacting through a velocity alignment mechanism, and the medium acts