ترغب بنشر مسار تعليمي؟ اضغط هنا

Fixup Initialization: Residual Learning Without Normalization

209   0   0.0 ( 0 )
 نشر من قبل Hongyi Zhang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Normalization layers are a staple in state-of-the-art deep neural network architectures. They are widely believed to stabilize training, enable higher learning rate, accelerate convergence and improve generalization, though the reason for their effectiveness is still an active research topic. In this work, we challenge the commonly-held beliefs by showing that none of the perceived benefits is unique to normalization. Specifically, we propose fixed-update initialization (Fixup), an initialization motivated by solving the exploding and vanishing gradient problem at the beginning of training via properly rescaling a standard initialization. We find training residual networks with Fixup to be as stable as training with normalization -- even for networks with 10,000 layers. Furthermore, with proper regularization, Fixup enables residual networks without normalization to achieve state-of-the-art performance in image classification and machine translation.



قيم البحث

اقرأ أيضاً

Normalization techniques have proved to be a crucial ingredient of successful training in a traditional supervised learning regime. However, in the zero-shot learning (ZSL) world, these ideas have received only marginal attention. This work studies n ormalization in ZSL scenario from both theoretical and practical perspectives. First, we give a theoretical explanation to two popular tricks used in zero-shot learning: normalize+scale and attributes normalization and show that they help training by preserving variance during a forward pass. Next, we demonstrate that they are insufficient to normalize a deep ZSL model and propose Class Normalization (CN): a normalization scheme, which alleviates this issue both provably and in practice. Third, we show that ZSL models typically have more irregular loss surface compared to traditional classifiers and that the proposed method partially remedies this problem. Then, we test our approach on 4 standard ZSL datasets and outperform sophisticated modern SotA with a simple MLP optimized without any bells and whistles and having ~50 times faster training speed. Finally, we generalize ZSL to a broader problem -- continual ZSL, and introduce some principled metrics and rigorous baselines for this new setup. The project page is located at https://universome.github.io/class-norm.
Batch normalization (BN) is a key facilitator and considered essential for state-of-the-art binary neural networks (BNN). However, the BN layer is costly to calculate and is typically implemented with non-binary parameters, leaving a hurdle for the e fficient implementation of BNN training. It also introduces undesirable dependence between samples within each batch. Inspired by the latest advance on Batch Normalization Free (BN-Free) training, we extend their framework to training BNNs, and for the first time demonstrate that BNs can be completed removed from BNN training and inference regimes. By plugging in and customizing techniques including adaptive gradient clipping, scale weight standardization, and specialized bottleneck block, a BN-free BNN is capable of maintaining competitive accuracy compared to its BN-based counterpart. Extensive experiments validate the effectiveness of our proposal across diverse BNN backbones and datasets. For example, after removing BNs from the state-of-the-art ReActNets, it can still be trained with our proposed methodology to achieve 92.08%, 68.34%, and 68.0% accuracy on CIFAR-10, CIFAR-100, and ImageNet respectively, with marginal performance drop (0.23%~0.44% on CIFAR and 1.40% on ImageNet). Codes and pre-trained models are available at: https://github.com/VITA-Group/BNN_NoBN.
A well-known issue of Batch Normalization is its significantly reduced effectiveness in the case of small mini-batch sizes. When a mini-batch contains few examples, the statistics upon which the normalization is defined cannot be reliably estimated f rom it during a training iteration. To address this problem, we present Cross-Iteration Batch Normalization (CBN), in which examples from multiple recent iterations are jointly utilized to enhance estimation quality. A challenge of computing statistics over multiple iterations is that the network activations from different iterations are not comparable to each other due to changes in network weights. We thus compensate for the network weight changes via a proposed technique based on Taylor polynomials, so that the statistics can be accurately estimated and batch normalization can be effectively applied. On object detection and image classification with small mini-batch sizes, CBN is found to outperform the original batch normalization and a direct calculation of statistics over previous iterations without the proposed compensation technique. Code is available at https://github.com/Howal/Cross-iterationBatchNorm .
We revisit residual algorithms in both model-free and model-based reinforcement learning settings. We propose the bidirectional target network technique to stabilize residual algorithms, yielding a residual version of DDPG that significantly outperfo rms vanilla DDPG in the DeepMind Control Suite benchmark. Moreover, we find the residual algorithm an effective approach to the distribution mismatch problem in model-based planning. Compared with the existing TD($k$) method, our residual-based method makes weaker assumptions about the model and yields a greater performance boost.
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs). However, there is currently limited understanding of why SN is effective. In this work, we show that SN c ontrols two important failure modes of GAN training: exploding and vanishing gradients. Our proofs illustrate a (perhaps unintentional) connection with the successful LeCun initialization. This connection helps to explain why the most popular implementation of SN for GANs requires no hyper-parameter tuning, whereas stricter implementations of SN have poor empirical performance out-of-the-box. Unlike LeCun initialization which only controls gradient vanishing at the beginning of training, SN preserves this property throughout training. Building on this theoretical understanding, we propose a new spectral normalization technique: Bidirectional Scaled Spectral Normalization (BSSN), which incorporates insights from later improvements to LeCun initialization: Xavier initialization and Kaiming initialization. Theoretically, we show that BSSN gives better gradient control than SN. Empirically, we demonstrate that it outperforms SN in sample quality and training stability on several benchmark datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا