ترغب بنشر مسار تعليمي؟ اضغط هنا

Mean conservation of nodal volume and connectivity measures for Gaussian ensembles

66   0   0.0 ( 0 )
 نشر من قبل Igor Wigman
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study in depth the nesting graph and volume distribution of the nodal domains of a Gaussian field, which have been shown in previous works to exhibit asymptotic laws. A striking link is established between the asymptotic mean connectivity of a nodal domain (i.e. the vertex degree in its nesting graph) and the positivity of the percolation probability of the field, along with a direct dependence of the average nodal volume on the percolation probability. Our results support the prevailing ansatz that the mean connectivity and volume of a nodal domain is conserved for generic random fields in dimension $d=2$ but not in $d ge 3$, and are applied to a number of concrete motivating examples.



قيم البحث

اقرأ أيضاً

122 - Daniel Lacker 2021
Many Gibbs measures with mean field interactions are known to be chaotic, in the sense that any collection of $k$ particles in the $n$-particle system are asymptotically independent, as $ntoinfty$ with $k$ fixed or perhaps $k=o(n)$. This paper quanti fies this notion for a class of continuous Gibbs measures on Euclidean space with pairwise interactions, with main examples being systems governed by convex interactions and uniformly convex confinement potentials. The distance between the marginal law of $k$ particles and its limiting product measure is shown to be $O((k/n)^{c wedge 2})$, with $c$ proportional to the squared temperature. In the high temperature case, this improves upon prior results based on subadditivity of entropy, which yield $O(k/n)$ at best. The bound $O((k/n)^2)$ cannot be improved, as a Gaussian example demonstrates. The results are non-asymptotic, and distance is quantified via relative Fisher information, relative entropy, or the squared quadratic Wasserstein metric. The method relies on an a priori functional inequality for the limiting measure, used to derive an estimate for the $k$-particle distance in terms of the $(k+1)$-particle distance.
This paper concerns the approximation of probability measures on $mathbf{R}^d$ with respect to the Kullback-Leibler divergence. Given an admissible target measure, we show the existence of the best approximation, with respect to this divergence, from certain sets of Gaussian measures and Gaussian mixtures. The asymptotic behavior of such best approximations is then studied in the small parameter limit where the measure concentrates; this asymptotic behaviour is characterized using $Gamma$-convergence. The theory developed is then applied to understanding the frequentist consistency of Bayesian inverse problems. For a fixed realization of noise, we show the asymptotic normality of the posterior measure in the small noise limit. Taking into account the randomness of the noise, we prove a Bernstein-Von Mises type result for the posterior measure.
The tube method or the volume-of-tube method approximates the tail probability of the maximum of a smooth Gaussian random field with zero mean and unit variance. This method evaluates the volume of a spherical tube about the index set, and then trans forms it to the tail probability. In this study, we generalize the tube method to a case in which the variance is not constant. We provide the volume formula for a spherical tube with a non-constant radius in terms of curvature tensors, and the tail probability formula of the maximum of a Gaussian random field with inhomogeneous variance, as well as its Laplace approximation. In particular, the critical radius of the tube is generalized for evaluation of the asymptotic approximation error. As an example, we discuss the approximation of the largest eigenvalue distribution of the Wishart matrix with a non-identity matrix parameter. The Bonferroni method is the tube method when the index set is a finite set. We provide the formula for the asymptotic approximation error for the Bonferroni method when the variance is not constant.
For the Bargmann-Fock field on R d with d $ge$ 3, we prove that the critical level c (d) of the percolation model formed by the excursion sets {f $ge$ } is strictly positive. This implies that for every sufficiently close to 0 (in particular for the nodal hypersurfaces corresponding to the case = 0), {f = } contains an unbounded connected component that visits most of the ambient space. Our findings actually hold for a more general class of positively correlated smooth Gaussian fields with rapid decay of correlations. The results of this paper show that the behaviour of nodal hypersurfaces of these Gaussian fields in R d for d $ge$ 3 is very different from the behaviour of nodal lines of their two-dimensional analogues. Contents
We consider Gaussian measures $mu, tilde{mu}$ on a separable Hilbert space, with fractional-order covariance operators $A^{-2beta}$ resp. $tilde{A}^{-2tilde{beta}}$, and derive necessary and sufficient conditions on $A, tilde{A}$ and $beta, tilde{bet a} > 0$ for I. equivalence of the measures $mu$ and $tilde{mu}$, and II. uniform asymptotic optimality of linear predictions for $mu$ based on the misspecified measure $tilde{mu}$. These results hold, e.g., for Gaussian processes on compact metric spaces. As an important special case, we consider the class of generalized Whittle-Matern Gaussian random fields, where $A$ and $tilde{A}$ are elliptic second-order differential operators, formulated on a bounded Euclidean domain $mathcal{D}subsetmathbb{R}^d$ and augmented with homogeneous Dirichlet boundary conditions. Our outcomes explain why the predictive performances of stationary and non-stationary models in spatial statistics often are comparable, and provide a crucial first step in deriving consistency results for parameter estimation of generalized Whittle-Matern fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا