ﻻ يوجد ملخص باللغة العربية
Training recurrent neural networks (RNNs) on long sequence tasks is plagued with difficulties arising from the exponential explosion or vanishing of signals as they propagate forward or backward through the network. Many techniques have been proposed to ameliorate these issues, including various algorithmic and architectural modifications. Two of the most successful RNN architectures, the LSTM and the GRU, do exhibit modest improvements over vanilla RNN cells, but they still suffer from instabilities when trained on very long sequences. In this work, we develop a mean field theory of signal propagation in LSTMs and GRUs that enables us to calculate the time scales for signal propagation as well as the spectral properties of the state-to-state Jacobians. By optimizing these quantities in terms of the initialization hyperparameters, we derive a novel initialization scheme that eliminates or reduces training instabilities. We demonstrate the efficacy of our initialization scheme on multiple sequence tasks, on which it enables successful training while a standard initialization either fails completely or is orders of magnitude slower. We also observe a beneficial effect on generalization performance using this new initialization.
The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combin
We introduce Independently Recurrent Long Short-term Memory cells: IndyLSTMs. These differ from regular LSTM cells in that the recurrent weights are not modeled as a full matrix, but as a diagonal matrix, i.e. the output and state of each LSTM cell d
Dynamical mean field methods are used to calculate the phase diagram, many-body density of states, relative orbital occupancy and Fermi surface shape for a realistic model of $LaNiO_3$-based superlattices. The model is derived from density functional
In recent years, the mean field theory has been applied to the study of neural networks and has achieved a great deal of success. The theory has been applied to various neural network structures, including CNNs, RNNs, Residual networks, and Batch nor
We derive a set of equations expressing the parameters of the magnetic interactions characterizing a strongly correlated electronic system in terms of single-electron Greens functions and self-energies. This allows to establish a mapping between the