ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperinflation generalised: from its attractor mechanism to its tension with the `swampland conjectures

40   0   0.0 ( 0 )
 نشر من قبل Theodor Bjorkmo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In negatively curved field spaces, inflation can be realised even in steep potentials. Hyperinflation invokes the `centrifugal force of a field orbiting the hyperbolic plane to sustain inflation. We generalise hyperinflation by showing that it can be realised in models with any number of fields ($N_fgeq2$), and in broad classes of potentials that, in particular, dont need to be rotationally symmetric. For example, hyperinflation can follow a period of radial slow-roll inflation that undergoes geometric destabilisation, yet this inflationary phase is not identical to the recently proposed scenario of `side-tracked inflation. We furthermore provide a detailed proof of the attractor mechanism of (the original and generalised) hyperinflation, and provide a novel set of characteristic, explicit models. We close by discussing the compatibility of hyperinflation with observations and the recently much discussed `swampland conjectures. Observationally viable models can be realised that satisfy either the `de Sitter conjecture ($V/Vgtrsim 1$) or the `distance conjecture ($Delta phi lesssim 1$), but satisfying both simultaneously brings hyperinflation in some tension with successful reheating after inflation. However, hyperinflation can get much closer to satisfying all of these criteria than standard slow-roll inflation. Furthermore, while the original model is in stark tension with the weak gravity conjecture, generalisations can circumvent this issue.


قيم البحث

اقرأ أيضاً

126 - Jacob M. Leedom 2019
We discuss the prospects of measuring deviations of the dark energy equation of state from w=-1 by using the swampland conjectures to relate inflationary models to quintessence scenarios. This note is based on work done by the author with H. Murayama and C. Chiang arXiv:1811.01987.
Among Swampland conditions, the distance conjecture characterizes the geometry of scalar fields and the de Sitter conjecture constrains allowed potentials on it. We point out a connection between the distance conjecture and a refined version of the d e Sitter conjecture in any parametrically controlled regime of string theory by using Boussos covariant entropy bound. The refined version turns out to evade all counter-examples at scalar potential maxima that have been raised. We comment on the relation of our result to the Dine-Seiberg problem.
We discuss the relations between swampland conjectures and observational constraints on both inflation and dark energy. Using the requirement $| abla V|geq c V$, with $c$ as a universal constant whose value can be derived from inflation, there may be no observable distinction between constant and non-constant models of dark energy. However, the latest modification of the above conjecture, which utilizes the second derivative of the potential, opens up the opportunity for observations to determine if the dark energy equation of state deviates from that of a cosmological constant. We also comment on the observability of tensor fluctuations despite the conjecture that field excursions are smaller than the Planck scale.
55 - Adam R. Brown 2017
A model of cosmological inflation is proposed in which field space is a hyperbolic plane. The inflaton never slow-rolls, and instead orbits the bottom of the potential, buoyed by a centrifugal force. Though initial velocities redshift away during inf lation, in negatively curved spaces angular momentum naturally starts exponentially large and remains relevant throughout. Quantum fluctuations produce perturbations that are adiabatic and approximately scale invariant; strikingly, in a certain parameter regime the perturbations can grow double-exponentially during horizon crossing.
Motivated by the swampland dS conjecture, we consider a rolling scalar field as the source of dark energy. Furthermore, the swampland distance conjecture suggests that the rolling field will lead at late times to an exponentially light tower of state s. Identifying this tower as residing in the dark sector suggests a natural coupling of the scalar field to the dark matter, leading to a continually reducing dark matter mass as the scalar field rolls in the recent cosmological epoch. The exponent in the distance conjecture, $tilde{c}$, is expected to be an $mathcal{O}(1)$ number. Interestingly, when we include the local measurement of $H_0$, our model prefers a non-zero value of the coupling $tilde{c}$ with a significance of $2.8sigma$ and a best-fit at $tilde{c} sim 0.3$. Modifying the recent evolution of the universe in this way improves the fit to data at the $2sigma$ level compared to $Lambda$CDM. This string-inspired model automatically reduces cosmological tensions in the $H_0$ measurement as well as $sigma_8$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا