ﻻ يوجد ملخص باللغة العربية
We identify a trade-off between robustness and accuracy that serves as a guiding principle in the design of defenses against adversarial examples. Although this problem has been widely studied empirically, much remains unknown concerning the theory underlying this trade-off. In this work, we decompose the prediction error for adversarial examples (robust error) as the sum of the natural (classification) error and boundary error, and provide a differentiable upper bound using the theory of classification-calibrated loss, which is shown to be the tightest possible upper bound uniform over all probability distributions and measurable predictors. Inspired by our theoretical analysis, we also design a new defense method, TRADES, to trade adversarial robustness off against accuracy. Our proposed algorithm performs well experimentally in real-world datasets. The methodology is the foundation of our entry to the NeurIPS 2018 Adversarial Vision Challenge in which we won the 1st place out of ~2,000 submissions, surpassing the runner-up approach by $11.41%$ in terms of mean $ell_2$ perturbation distance.
We provide a general framework for characterizing the trade-off between accuracy and robustness in supervised learning. We propose a method and define quantities to characterize the trade-off between accuracy and robustness for a given architecture,
Adversarial training augments the training set with perturbations to improve the robust error (over worst-case perturbations), but it often leads to an increase in the standard error (on unperturbed test inputs). Previous explanations for this tradeo
The popular Alternating Least Squares (ALS) algorithm for tensor decomposition is efficient and easy to implement, but often converges to poor local optima---particularly when the weights of the factors are non-uniform. We propose a modification of t
To date, there has been no formal study of the statistical cost of interpretability in machine learning. As such, the discourse around potential trade-offs is often informal and misconceptions abound. In this work, we aim to initiate a formal study o
Despite achieving remarkable success in various domains, recent studies have uncovered the vulnerability of deep neural networks to adversarial perturbations, creating concerns on model generalizability and new threats such as prediction-evasive misc