ﻻ يوجد ملخص باللغة العربية
Witt (1996) has shown that for an elliptical potential, the four images of a quadruply lensed quasar lie on a rectangular hyperbola that passes through the unlensed quasar position and the center of the potential as well. Wynne and Schechter (2018) have shown that, for the singular isothermal elliptical potential (SIEP), the four images also lie on an `amplitude ellipse centered on the quasar position with axes parallel to the hyperbolas asymptotes. Witts hyperbola arises from equating the directions of both sides of the lens equation. The amplitude ellipse derives from equating the magnitudes. One can model any four points as an SIEP in three steps. 1. Find the rectangular hyperbola that passes through the points. 2. Find the aligned ellipse that also passes through them. 3. Find the hyperbola with asymptotes parallel to those of the first that passes through the center of the ellipse and the pair of images closest to each other. The second hyperbola and the ellipse give an SIEP that predicts the positions of the two remaining images where the curves intersect. Pinning the model to the closest pair guarantees a four image model. Such models permit rapid discrimination between gravitationally lensed quasars and random quartets of stars.
We develop a robust method to model quadruply lensed quasars, relying heavily on the work of Witt (1996), who showed that for elliptical potentials, the four image positions, the source, and the lensing galaxy lie on a right hyperbola. For the singul
Among known strongly lensed quasar systems, ~25% have gravitational potentials sufficiently flat (and sources sufficiently well aligned) to produce four images rather than two. The projected flattening of the lensing galaxy and tides from neighboring
Combining the exquisite angular resolution of Gaia with optical light curves and WISE photometry, the Gaia Gravitational Lenses group (GraL) uses machine learning techniques to identify candidate strongly lensed quasars, and has confirmed over two do
We present a microlensing analysis of 61 Chandra observations of 14 quadruply lensed quasars. X-ray flux measurements of the individual quasar images give a clean determination of the microlensing effects in the lensing galaxy and thus offer a direct
We present a new method of modelling time-series data based on the running optimal average (ROA). By identifying the effective number of parameters for the ROA model, in terms of the shape and width of its window function and the times and accuracies