ﻻ يوجد ملخص باللغة العربية
We present a microlensing analysis of 61 Chandra observations of 14 quadruply lensed quasars. X-ray flux measurements of the individual quasar images give a clean determination of the microlensing effects in the lensing galaxy and thus offer a direct assessment of the local fraction of stellar matter making up the total integrated mass along the lines of sight through the lensing galaxy. A Bayesian analysis of the ensemble of lensing galaxies gives a most likely local stellar fraction of 7%, with the other 93% in a smooth, dark matter component, at an average impact parameter R_c of 6.6 kpc from the center of the lensing galaxy. We divide the systems into smaller ensembles based on R_c and find that the most likely local stellar fraction varies qualitatively and quantitatively as expected, decreasing as a function of R_c.
Optical and X-ray observations of the quadruply imaged quasar 1RXS J1131-1231 show flux ratio anomalies among the images factors of ~2 in the optical and ~3-9 in X-rays. Temporal variability of the quasar seems an unlikely explanation for the discrep
Dwarf spheroidal galaxies are dark matter dominated systems, and as such, ideal for indirect dark matter searches. If dark matter decays into high-energy photons in the dwarf galaxies, they will be a good target for current and future generations of
We use X-ray and optical microlensing measurements to study the shape of the dark matter density profile in the lens galaxies and the size of the (soft) X-ray emission region. We show that single epoch X-ray microlensing is sensitive to the source si
Among known strongly lensed quasar systems, ~25% have gravitational potentials sufficiently flat (and sources sufficiently well aligned) to produce four images rather than two. The projected flattening of the lensing galaxy and tides from neighboring
We use a new non-parametric Bayesian approach to obtain the most probable mass distributions and circular velocity curves along with their confidence ranges, given deprojected density and temperature profiles of the hot gas surrounding X-ray bright e