ترغب بنشر مسار تعليمي؟ اضغط هنا

Truly eccentric. II. When can two circular planets mimic a single eccentric orbit?

428   0   0.0 ( 0 )
 نشر من قبل Robert Wittenmyer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When, in the course of searching for exoplanets, sparse sampling and noisy data make it necessary to disentangle possible solutions to the observations, one must consider the possibility that what appears to be a single eccentric Keplerian signal may in reality be attributed to two planets in near-circular orbits. There is precedent in the literature for such outcomes, whereby further data or new analysis techniques reveal hitherto occulted signals. Here, we perform suites of simulations to explore the range of possible two-planet configurations that can result in such confusion. We find that a single Keplerian orbit with $e>$0.5 can virtually never be mimicked by such deceptive system architectures. This result adds credibility to the most eccentric planets that have been found to date, and suggests that it could well be worth revisiting the catalogue of moderately eccentric confirmed exoplanets in the coming years, as more data become available, to determine whether any such deceptive couplets are hidden in the observational data.



قيم البحث

اقرأ أيضاً

103 - Sam Hadden , Yoram Lithwick 2018
We derive a criterion for the onset of chaos in systems consisting of two massive, eccentric, coplanar planets. Given the planets masses and separation, the criterion predicts the critical eccentricity above which chaos is triggered. Chaos occurs whe re mean motion resonances overlap, as in Wisdom (1980)s pioneering work. But whereas Wisdom considered only nearly circular planets, and hence examined only first order resonances, we extend his results to arbitrarily eccentric planets (up to crossing orbits) by examining resonances of all orders. We thereby arrive at a simple expression for the critical eccentricity. We do this first for a test particle in the presence of a planet, and then generalize to the case of two massive planets, based on a new approximation to the Hamiltonian (Hadden, in prep). We then confirm our results with detailed numerical simulations. Finally, we explore the extent to which chaotic two-planet systems eventually result in planetary collisions.
We present radial velocity measurements of two stars observed as part of the Lick Subgiants Planet Search and the Keck N2K survey. Variations in the radial velocities of both stars reveal the presence of Jupiter-mass exoplanets in highly eccentric or bits. HD 16175 is a G0 subgiant from the Lick Subgiants Planet Search, orbited by a planet having a minimum mass of 4.4 M_Jup, in an eccentric (e = 0.59), 2.71 yr orbit. HD 96167 is a G5 subgiant from the N2K (Next 2000) program at Keck Observatory, orbited by a planet having a minimum mass of 0.68 M_Jup, in an eccentric (e = 0.71), 1.366 yr orbit. Both stars are relatively massive (M_star = 1.3 M_sun) and are very metal rich ([Fe/H] > +0.3). We describe our methods for measuring the stars radial velocity variations and photometric stability.
163 - Geoffrey W. Marcy 1999
Doppler measurements of two G-type main-sequence stars, HD210277 and HD168443, reveal Keplerian variations that imply the presence of companions with masses (M sin i) of 1.28 and 5.04 M_Jup and orbital periods of 437 d and 58 d, respectively. The orb its have large eccentricities of e=0.45 and e=0.54, respectively. All 9 known extrasolar planet candidates with a=0.2-2.5 AU have orbital eccentricities greater than 0.1, higher than that of Jupiter (e=0.05). Eccentric orbits may result from gravitational perturbations imposed by other orbiting planets or stars, by passing stars in the dense star-forming cluster, or by the protoplanetary disk. Based on published studies and our near-IR adaptive optics images, HD210277 appears to be a single star. However, HD168443 exhibits a long-term velocity trend consistent with a close stellar companion, as yet undetected directly.
The space telescope CoRoT searches for transiting extrasolar planets by continuously monitoring the optical flux of thousands of stars in several fields of view. We report the discovery of CoRoT-10b, a giant planet on a highly eccentric orbit (e=0.53 +/- 0.04) revolving in 13.24 days around a faint (V=15.22) metal-rich K1V star. We use CoRoT photometry, radial velocity observations taken with the HARPS spectrograph, and UVES spectra of the parent star to derive the orbital, stellar and planetary parameters. We derive a radius of the planet of 0.97 +/- 0.07 R_Jup and a mass of 2.75 +/- 0.16 M_Jup. The bulk density, rho_pl=3.70 +/- 0.83 g/cm^3, is ~2.8 that of Jupiter. The core of CoRoT-10b could contain up to 240 M_Earth of heavy elements. Moving along its eccentric orbit, the planet experiences a 10.6-fold variation in insolation. Owing to the long circularisation time, tau_circ > 7 Gyr, a resonant perturber is not required to excite and maintain the high eccentricity of CoRoT-10b.
130 - S. C. C. Barros 2010
We report the discovery of WASP-38b, a long period transiting planet in an eccentric 6.871815 day orbit. The transit epoch is 2455335.92050 +/- 0.00074 (HJD) and the transit duration is 4.663 hours. WASP-38bs discovery was enabled due to an upgrade t o the SuperWASP-North cameras. We performed a spectral analysis of the host star HD 146389/BD+10 2980 that yielded Teff = 6150 +/- 80K, logg =4.3 +/- 0.1, vsini=8.6 +/- 0.4 km/s, M*=1.16 +/- 0.04 Msun and R* =1.33 +/- 0.03 Rsun, consistent with a dwarf of spectral type F8. Assuming a main-sequence mass-radius relation for the star, we fitted simultaneously the radial velocity variations and the transit light curves to estimate the orbital and planetary parameters. The planet has a mass of 2.69 +/- 0.06 Mjup and a radius of 1.09 +/-0.03 Rjup giving a density, rho_p = 2.1 +/-0.1 rho_jup. The high precision of the eccentricity e=0.0314 +/- 0.0044 is due to the relative transit timing from the light curves and the RV shape. The planet equilibrium temperature is estimated at 1292 +/- 33K. WASP-38b is the longest period planet found by SuperWASP-North and with a bright host star (V =9.4 mag), is a good candidate for followup atmospheric studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا