ﻻ يوجد ملخص باللغة العربية
We introduce a novel approach to perform first-order optimization with orthogonal and unitary constraints. This approach is based on a parametrization stemming from Lie group theory through the exponential map. The parametrization transforms the constrained optimization problem into an unconstrained one over a Euclidean space, for which common first-order optimization methods can be used. The theoretical results presented are general enough to cover the special orthogonal group, the unitary group and, in general, any connected compact Lie group. We discuss how this and other parametrizations can be computed efficiently through an implementation trick, making numerically complex parametrizations usable at a negligible runtime cost in neural networks. In particular, we apply our results to RNNs with orthogonal recurrent weights, yielding a new architecture called expRNN. We demonstrate how our method constitutes a more robust approach to optimization with orthogonal constraints, showing faster, accurate, and more stable convergence in several tasks designed to test RNNs.
We introduce an efficient approach for optimization over orthogonal groups on highly parallel computation units such as GPUs or TPUs. As in earlier work, we parametrize an orthogonal matrix as a product of Householder reflections. However, to overcom
The prevailing thinking is that orthogonal weights are crucial to enforcing dynamical isometry and speeding up training. The increase in learning speed that results from orthogonal initialization in linear networks has been well-proven. However, whil
We present a new class of stochastic, geometrically-driven optimization algorithms on the orthogonal group $O(d)$ and naturally reductive homogeneous manifolds obtained from the action of the rotation group $SO(d)$. We theoretically and experimentall
Deep convolutional neural networks are hindered by training instability and feature redundancy towards further performance improvement. A promising solution is to impose orthogonality on convolutional filters. We develop an efficient approach to im
Despite existing work on ensuring generalization of neural networks in terms of scale sensitive complexity measures, such as norms, margin and sharpness, these complexity measures do not offer an explanation of why neural networks generalize better w