ﻻ يوجد ملخص باللغة العربية
This paper is devoted to Fokker-Planck and linear kinetic equations with very weak confinement corresponding to a potential with an at most logarithmic growth and no integrable stationary state. Our goal is to understand how to measure the decay rates when the diffusion wins over the confinement although the potential diverges at infinity.
In this paper we study the Cauchy problem for the Landau Hamiltonian wave equation, with time dependent irregular (distributional) electromagnetic field and similarly irregular velocity. For such equations, we describe the notion of a `very weak solu
We establish weak-strong uniqueness and stability properties of renormalised solutions to a class of energy-reaction-diffusion systems, which genuinely feature cross-diffusion effects. The systems considered are motivated by thermodynamically consist
We prove existence and uniqueness of distributional, bounded, nonnegative solutions to a fractional filtration equation in ${mathbb R}^d$. With regards to uniqueness, it was shown even for more general equations in [19] that if two bounded solutions
This paper investigates an incompressible chemotaxis-Navier-Stokes system with slow $p$-Laplacian diffusion begin{eqnarray} left{begin{array}{lll} n_t+ucdot abla n= ablacdot(| abla n|^{p-2} abla n)- ablacdot(nchi(c) abla c),& xinOmega, t>0, c_t+ucdot
In this paper, we study the time periodic problem to a three-dimensional chemotaxis-Stokes model with porous medium diffusion $Delta n^m$ and inhomogeneous mixed boundary conditions. By using a double-level approximation method and some iterative tec