ﻻ يوجد ملخص باللغة العربية
In a standard setting of Bayesian optimization (BO), the objective function evaluation is assumed to be highly expensive. Multi-fidelity Bayesian optimization (MFBO) accelerates BO by incorporating lower fidelity observations available with a lower sampling cost. In this paper, we focus on the information-based approach, which is a popular and empirically successful approach in BO. For MFBO, however, existing information-based methods are plagued by difficulty in estimating the information gain. We propose an approach based on max-value entropy search (MES), which greatly facilitates computations by considering the entropy of the optimal function value instead of the optimal input point. We show that, in our multi-fidelity MES (MF-MES), most of additional computations, compared with usual MES, is reduced to analytical computations. Although an additional numerical integration is necessary for the information across different fidelities, this is only in one dimensional space, which can be performed efficiently and accurately. Further, we also propose parallelization of MF-MES. Since there exist a variety of different sampling costs, queries typically occur asynchronously in MFBO. We show that similar simple computations can be derived for asynchronous parallel MFBO. We demonstrate effectiveness of our approach by using benchmark datasets and a real-world application to materials science data.
We study the novel problem of blackbox optimization of multiple objectives via multi-fidelity function evaluations that vary in the amount of resources consumed and their accuracy. The overall goal is to approximate the true Pareto set of solutions b
Online algorithms for detecting changepoints, or abrupt shifts in the behavior of a time series, are often deployed with limited resources, e.g., to edge computing settings such as mobile phones or industrial sensors. In these scenarios it may be ben
This paper presents novel mixed-type Bayesian optimization (BO) algorithms to accelerate the optimization of a target objective function by exploiting correlated auxiliary information of binary type that can be more cheaply obtained, such as in polic
We propose a practical Bayesian optimization method over sets, to minimize a black-box function that takes a set as a single input. Because set inputs are permutation-invariant, traditional Gaussian process-based Bayesian optimization strategies whic
We propose a novel information-theoretic approach for Bayesian optimization called Predictive Entropy Search (PES). At each iteration, PES selects the next evaluation point that maximizes the expected information gained with respect to the global max