ﻻ يوجد ملخص باللغة العربية
The development of valleytronics demands long-range electronic transport with preserved valley index, a degree of freedom similar to electron spin. A promising structure for this end is a topological one-dimensional (1D) channel formed in bilayer graphene (BLG) under special electrostatic conditions or specific stacking configuration, called domain wall (DW). In these 1D channels, the valley-index defines the propagation direction of the charge carriers and the chiral edge states (kink states) are robust over many kinds of disorder. However, the fabrication of DWs is challenging, requiring the design of complex multi-gate structures or have been producing on rough substrates, showing a limited mean free path. Here, we report on a high-quality DW formed at the curved boundary of folded bilayer graphene (folded-BLG). At such 1D conducting channel we measured a two-terminal resistance close to the quantum resistance $R = e^2/4h$ at zero magnetic field, a signature of kink states. Our experiments reveal a long-range ballistic transport regime that occurs only at the DW of the folded-BLG, while the other regions behave like semiconductors with tunable band gap.
Valley pseudospin, the quantum degree of freedom characterizing the degenerate valleys in energy bands, is a distinct feature of two-dimensional Dirac materials. Similar to spin, the valley pseudospin is spanned by a time reversal pair of states, tho
We theoretically investigate a folded bilayer graphene structure as an experimentally realizable platform to produce the one-dimensional topological zero-line modes. We demonstrate that the folded bilayer graphene under an external gate potential ena
Topological insulators realized in materials with strong spin-orbit interactions challenged the long-held view that electronic materials are classified as either conductors or insulators. The emergence of controlled, two-dimensional moire patterns ha
We explore a network of electronic quantum valley Hall (QVH) states in the moire crystal of minimally twisted bilayer graphene. In our transport measurements we observe Fabry-Perot and Aharanov-Bohm oscillations which are robust in magnetic fields ra
We study theoretically interaction of a bilayer graphene with a circularly polarized ultrafast optical pulse of a single oscillation at an oblique incidence. The normal component of the pulse breaks the inversion symmetry of the system and opens up a