ﻻ يوجد ملخص باللغة العربية
When the reduced state of a many-body quantum system is independent of its remaining parts, we say it shows what has become known by shielding property. Under some assumptions, equilibrium states of quantum transverse Ising models do manifest such phenomenon. Namely, imagine a many-body quantum system described by a lattice in the presence of an external magnetic field. Suppose there exists a separating interface on this lattice splitting the system into two subsets such that they only interact one another through that interface. In addition, suppose also that the applied external magnetic field is null on the interface. The shielding property states that the reduced state of the set in one side of the interface has no dependence on the Hamiltonian parameters of the set in the other side. This statement was proved in [N. Moller et al, PRE 97, 032101 (2018)] for the case where there is only one site in the interface. For lattices with more sites in the interface, it was conjectured that the shielding property is true when the system is in the ground state. For the case of positive temperatures, it does not hold and there are counterexamples to show that. Here we show that the conjecture does hold true for ground states, but under an additional condition. This condition is met, in particular, if the Hamiltonian terms associated to the interface are frustration-free.
We show that Gibbs states of non-homogeneous transverse Ising chains satisfy a emph{shielding} property. Namely, whatever the fields on each spin and exchange couplings between neighboring spins are, if the field in one particular site is null, the r
We construct a three-dimensional quantum cellular automaton (QCA), an automorphism of the local operator algebra on a lattice of qubits, which disentangles the ground state of the Walker-Wang three fermion model. We show that if this QCA can be reali
We consider the mutual Renyi information I^n(A,B)=S^n_A+S^n_B-S^n_{AUB} of disjoint compact spatial regions A and B in the ground state of a d+1-dimensional conformal field theory (CFT), in the limit when the separation r between A and B is much grea
We present fresh evidence for the presence of discrete quantum time crystals in two spatial dimensions. Discrete time crystals are intricate quantum systems that break discrete time translation symmetry in driven quantum many-body systems undergoing
The Clifford hierarchy is a nested sequence of sets of quantum gates critical to achieving fault-tolerant quantum computation. Diagonal gates of the Clifford hierarchy and nearly diagonal semi-Clifford gates are particularly important: they admit eff