ترغب بنشر مسار تعليمي؟ اضغط هنا

Milky Way tomography with the SkyMapper Southern Survey: I: Atmospheric parameters and distances of one million red giants

66   0   0.0 ( 0 )
 نشر من قبل Yang Huang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate determinations of atmospheric parameters (effective temperature $T_{rm eff}$, surface gravity log $g$ and metallicity [Fe/H]) and distances for large complete samples are of vital importance for various Galactic studies. We have developed a photometric method to select red giant stars and estimate their atmospheric parameters from the photometric colors provided by the SkyMapper Southern Survey (SMSS) data release (DR) 1.1, using stars in common with the LAMOST Galactic spectroscopic surveys as a training set. Distances are estimated with two different approaches: one based on the Gaia DR2 parallaxes for nearby ($d leq 4.5$ kpc) bright stars and another based on the absolute magnitudes predicted by intrinsic color $(g-i)_0$ and photometric metallicity [Fe/H] for distant ($d > 4.5$ kpc) faint stars. Various tests show that our method is capable of delivering atmospheric parameters with a precision of $sim$80 K for $T_{rm eff}$, $sim$0.18 dex for [Fe/H] and $sim$0.35 dex for log $g$, but with a significant systematic error at log $g sim$ 2.3. For distances delivered from $(g-i)_0$ and photometric [Fe/H], our test with the member stars of globular clusters show a median uncertainty of 16 per cent with a negligible zero-point offset. Using this method, atmospheric parameters and distances of nearly one million red giant stars are derived from SMSS DR1.1. Proper motion measurements from Gaia DR2 are available for almost all of the red giant stars, and radial velocity measurements from several large spectroscopic surveys are available for 44 per cent of these. This sample will be accessible online at https://yanghuang0.wixsite.com/yangh/research .



قيم البحث

اقرأ أيضاً

We apply the spectroscopy-based stellar-color regression (SCR) method to perform an accurate photometric re-calibration of the second data release from the SkyMapper Southern Survey (SMSS DR2). From comparison with a sample of over 200,000 dwarf star s with stellar atmospheric parameters taken from GALAH+ DR3 and with accurate, homogeneous photometry from $Gaia$ DR2, zero-point offsets are detected in the original photometric catalog of SMSS DR2, in particular for the gravity- and metallicity-sensitive $uv$ bands. For $uv$ bands, the zero-point offsets are close to zero at very low extinction, and then steadily increase with $E (B - V)$, reaching as large as 0.174 and 0.134 mag respectively, at $E (B - V) sim 0.5$ mag. These offsets largely arise from the adopted dust term in the transformations used by SMSS DR2 to construct photometric calibrators from the ATLAS reference catalog. For the $gr$ bands, the zero-point offsets exhibit negligible variations with SFD $E(B - V )$, due to their tiny coefficients on the dust term in the transformation. Our study also reveals small, but significant, spatial variations of the zero-point offsets in all $uvgr$ bands. External checks using Stromgren photometry, WD loci and the SDSS Stripe 82 standard-star catalog independently confirm the zero-points found by our revised SCR method.
If the Galaxy is axisymmetric and in dynamical equilibrium, we expect negligible fluctuations in the residual line-of-sight velocity field. Recent results using the apg{} survey find significant fluctuations in velocity for stars in the midplane ($|z |<$0.25 kpc) out to 5 kpc, suggesting that the dynamical influence of non-axisymmetric features i.e., the Milky Ways bar, spiral arms and merger events extends out to the Solar neighborhood. Their measured power spectrum has a characteristic amplitude of 11 kms{} on a scale of 2.5 kpc. The existence of such large-scale streaming motions has important implications for determining the Suns motion about the Galactic Centre. Using Red Clump stars from glh{} and apg{}, we map the line-of-sight velocities around the Sun (d$<$5 kpc), and $|z|<$1.25 kpc from the midplane. By subtracting a smooth axisymmetric model for the velocity field, we study the residual fluctuations and compare our findings with mock survey generated by glx{}. We find negligible large-scale fluctuations away from the plane. In the mid-plane, we reproduce the earlier apg{} power spectrum but with 20% smaller amplitude (9.3 kms{}) after taking into account a few systematics (e.g., volume completeness). Using a flexible axisymmetric model the power-amplitude is further reduced to 6.3 kms{}. Additionally, our simulations show that, in the plane, distances are underestimated for high-mass Red Clump stars which can lead to spurious power-amplitude of about 5.2 kms{}. Taking this into account, we estimate the amplitude of real fluctuations to be $<$4.6 kms{}, about a factor of three less than the apg{} result.
148 - R. K. Saito , D. Minniti , B. Dias 2012
The Milky Way (MW) bulge is a fundamental Galactic component for understanding the formation and evolution of galaxies, in particular our own. The ESO Public Survey VISTA Variables in the Via Lactea is a deep near-IR survey mapping the Galactic bulge and southern plane. Data taken during 2010-11 covered 315 deg2 in the bulge area in the JHKs bands. We used VVV data for the whole bulge area as a single and homogeneous data set to build for the first time a single colour-magnitude diagram (CMD) for the entire Galactic bulge. Photometric data in the JHKs bands were combined to produce a single and huge data set containing 173.1M+ sources in the three bands. Selecting only the data points flagged as stellar, the total number of sources is 84.0M+. We built the largest CMDs published up to date, containing 173.1+ million sources for all data points, and more than 84.0 million sources accounting for the stellar sources only. The CMD has a complex shape, mostly owing to the complexity of the stellar population and the effects of extinction and reddening towards the Galactic centre. The red clump (RC) giants are seen double in magnitude at b ~ -8-10 deg, while in the inner part (b ~ 3deg) they appear to be spreading in colour, or even splitting into a secondary peak. The analysis of the outermost bulge area reveals a well-defined sequence of late K and M dwarfs, seen at (J-Ks) ~ 0.7-0.9 mag and Ks~14 mag. The interpretation of the CMD yields important information about the MW bulge, showing the fingerprint of its structure and content. We report a well-defined red dwarf sequence in the outermost bulge, which is important for the planetary transit searches of VVV. The double RC in magnitude seen in the outer bulge is the signature of the X-shaped MW bulge, while the spreading of the RC in colour are caused by reddening effects.
[Abridged] Ensemble studies of red-giant stars with exquisite asteroseismic, spectroscopic, and astrometric constraints offer a novel opportunity to recast and address long-standing questions concerning the evolution of stars and of the Galaxy. Here, we infer masses and ages for nearly 5400 giants with available Kepler light curves and APOGEE spectra, and discuss some of the systematics that may affect the accuracy of the inferred stellar properties. First, we look at age-chemical-abundances relations. We find a dearth of young, metal-rich stars, and the existence of a significant population of old (8-9 Gyr), low-[$alpha$/Fe], super-solar metallicity stars, reminiscent of the age and metallicity of the well-studied open cluster NGC6791. The age-chemo-kinematic properties of these stars indicate that efficient radial migration happens in the thin disk. We find that ages and masses of the nearly 400 $alpha$-element-rich red-giant-branch (RGB) stars in our sample are compatible with those of an old (~11 Gyr), nearly coeval, chemical-thick disk population. Using a statistical model, we show that 95% of the population was born within ~1.5 Gyr. Moreover, we find a difference in the vertical velocity dispersion between low- and high-[$alpha$/Fe] populations, confirming their different chemo-dynamical histories. We then exploit the almost coeval $alpha$-rich population to gain insight into processes that may have altered the mass of a star along its evolution, which are key to improve the mapping of the observed stellar mass to age. We find evidence for a mean integrated RGB mass loss <$Delta$M>= 0.10 $pm$ 0.02 Msun and that the occurrence of massive (M $gtrsim$ 1.1 Msun) $alpha$-rich stars is of the order of 5% on the RGB, and significantly higher in the RC, supporting the scenario in which most of these stars had undergone interaction with a companion.
155 - M. Soto , R. Barba , G. Gunthardt 2013
The new multi-epoch near-infrared VVV survey (VISTA Variables in the Via Lactea) is sampling 562 sq. deg of the Galactic bulge and adjacent regions of the disk. Accurate astrometry established for the region surveyed allows the VVV data to be merged with overlapping surveys (e.g., GLIMPSE, WISE, 2MASS, etc.), thereby enabling the construction of longer baseline spectral energy distributions for astronomical targets. However, in order to maximize use of the VVV data, a set of transformation equations are required to place the VVV JHKs photometry onto the 2MASS system. The impetus for this work is to develop those transformations via a comparison of 2MASS targets in 152 VVV fields sampling the Galactic disk. The transformation coefficients derived exhibit a reliance on variables such as extinction. The transformed data were subsequently employed to establish a mean reddening law of E_{J-H}/E_{H-Ks}=2.13 +/- 0.04, which is the most precise determination to date and merely emphasizes the pertinence of the VVV data for determining such important parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا