ترغب بنشر مسار تعليمي؟ اضغط هنا

Milky Way Demographics with the VVV Survey II. Color Transformations and Near-Infrared Photometry for 136 Million Stars in the Southern Galactic Disk

108   0   0.0 ( 0 )
 نشر من قبل Mario Soto
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The new multi-epoch near-infrared VVV survey (VISTA Variables in the Via Lactea) is sampling 562 sq. deg of the Galactic bulge and adjacent regions of the disk. Accurate astrometry established for the region surveyed allows the VVV data to be merged with overlapping surveys (e.g., GLIMPSE, WISE, 2MASS, etc.), thereby enabling the construction of longer baseline spectral energy distributions for astronomical targets. However, in order to maximize use of the VVV data, a set of transformation equations are required to place the VVV JHKs photometry onto the 2MASS system. The impetus for this work is to develop those transformations via a comparison of 2MASS targets in 152 VVV fields sampling the Galactic disk. The transformation coefficients derived exhibit a reliance on variables such as extinction. The transformed data were subsequently employed to establish a mean reddening law of E_{J-H}/E_{H-Ks}=2.13 +/- 0.04, which is the most precise determination to date and merely emphasizes the pertinence of the VVV data for determining such important parameters.

قيم البحث

اقرأ أيضاً

The Milky Way (MW) bulge is a fundamental Galactic component for understanding the formation and evolution of galaxies, in particular our own. The ESO Public Survey VISTA Variables in the Via Lactea is a deep near-IR survey mapping the Galactic bulge and southern plane. Data taken during 2010-11 covered 315 deg2 in the bulge area in the JHKs bands. We used VVV data for the whole bulge area as a single and homogeneous data set to build for the first time a single colour-magnitude diagram (CMD) for the entire Galactic bulge. Photometric data in the JHKs bands were combined to produce a single and huge data set containing 173.1M+ sources in the three bands. Selecting only the data points flagged as stellar, the total number of sources is 84.0M+. We built the largest CMDs published up to date, containing 173.1+ million sources for all data points, and more than 84.0 million sources accounting for the stellar sources only. The CMD has a complex shape, mostly owing to the complexity of the stellar population and the effects of extinction and reddening towards the Galactic centre. The red clump (RC) giants are seen double in magnitude at b ~ -8-10 deg, while in the inner part (b ~ 3deg) they appear to be spreading in colour, or even splitting into a secondary peak. The analysis of the outermost bulge area reveals a well-defined sequence of late K and M dwarfs, seen at (J-Ks) ~ 0.7-0.9 mag and Ks~14 mag. The interpretation of the CMD yields important information about the MW bulge, showing the fingerprint of its structure and content. We report a well-defined red dwarf sequence in the outermost bulge, which is important for the planetary transit searches of VVV. The double RC in magnitude seen in the outer bulge is the signature of the X-shaped MW bulge, while the spreading of the RC in colour are caused by reddening effects.
The new generation of IR surveys are revealing and quantifying Galactic features, providing an improved 3-D interpretation of our own Galaxy. We present an analysis of the global distribution of dust clouds in the bulge using the near-IR photometry o f 157 million stars from the VVV Survey. We investigate the color magnitude diagram of the Milky Way bulge which shows a red giant clump of core He burning stars that is split in two color components, with a mean color difference of (Z-Ks)=0.55 magnitudes equivalent to A_V=2.0 magnitudes. We conclude that there is an optically thick dust lane at intermediate latitudes above and below the plane, that runs across several square degrees from l=-10 deg to l=+10 deg. We call this feature the Great Dark Lane. Although its exact distance is uncertain, it is located in front of the bulge. The evidence for a large-scale great dark lane within the Galactic bulge is important in order to constrain models of the barred Milky Way bulge and to compare our galaxy with external barred galaxies, where these kinds of features are prominent. We discuss two other potential implications of the presence of the Great Dark Lane for microlensing and bulge stellar populations studies.
Planetary nebulae (PNe) are powerful tracers of evolved stellar populations. Among the 3000 known PNe in the Galaxy, about 600 are located within the 520 square-degree area covered by the VVV survey. The VVV photometric catalogue provides an importan t new dataset for the study of PNe, with high-resolution imaging in five near-infrared bands. Aperture photometry of known PNe in the VVV area was retrieved from source catalogues. Care was taken to minimise any confusion with field stars. The colours of the PNe we are determined for H-Ks, J-H, Z-Y, and Y-J, and compared to stars and to other types of emission line objects. Cloudy photo-ionisation models were used to predict colours for typical PNe. We present near-infrared photometry for 353 known PNe. The best separation from other objects is obtained in the H-Ks vs. J-H diagram. We calculated the emission-line contribution to the in-band flux based on a model for NGC 6720: we find that this is highest in the Z and Y bands at over 50%, lower in the J band at 40%, and lowest in the H and Ks bands at 20%. A new view of PNe in the wavelength domain of the Z and Y bands is shown. Photo-ionisation models are used to explore the observed colours in these bands. The Y band is shown to be dominated by HeI 1.083 mu and HeII 1.012 mu, and colours involving this band are very sensitive to the temperature of the ionizing star. The VVV survey represents a unique dataset for studing crowded and obscured regions in the Galactic plane. The diagnostic diagrams presented here allow one to study the properties of known PNe and to uncover objects not previously classified.
We use the extensive $Gaia$ Data Release 2 set of Long Period Variables to select a sample of Oxygen-rich Miras throughout the Milky Way disk and bulge for study. Exploiting the relation between Mira pulsation period and stellar age/chemistry, we sli ce the stellar density of the Galactic disk and bulge as a function of period. We find the morphology of both components evolves as a function of stellar age/chemistry with the stellar disk being stubby at old ages, becoming progressively thinner and more radially extended at younger stellar ages, consistent with the picture of inside-out and upside-down formation of the Milky Ways disk. We see evidence of a perturbed disk, with large-scale stellar over-densities visible both in and away from the stellar plane. We find the bulge is well modelled by a triaxial boxy distribution with an axis ratio of $sim [1:0.4:0.3]$. The oldest of the Miras ($sim$ 9-10 Gyr) show little bar-like morphology, whilst the younger stars appear inclined at a viewing angle of $sim 21^{circ}$ to the Sun-Galactic Centre line. This suggests that bar formation and buckling took place 8-9 Gyr ago, with the older Miras being hot enough to avoid being trapped by the growing bar. We find the youngest Miras to exhibit a strong peanut morphology, bearing the characteristic X-shape of an inclined bar structure.
135 - M. Soto , R. Barba , D. Minniti 2019
An improved high-resolution and deep A$_{Ks}$ foreground dust extinction map is presented for the Galactic disk area within $295^{circ} lesssim l lesssim 350^{circ}$, $-1.0^{circ} lesssim b lesssim +1.0^{circ}$. At some longitudes the map reaches up to $|b|sim2.25^{circ}$, for a total of $sim$148 deg$^2$. The map was constructed via the Rayleigh-Jeans Color Excess (RJCE) technique based on deep near-infrared (NIR) and mid-infrared (MIR) photometry. The new extinction map features a maximum bin size of 1, and relies on NIR observations from the Two Micron All-Sky Survey (2MASS) and new data from ESOs Vista Variables in the Via Lactea (VVV) survey, in concert with MIR observations from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE). The VVV photometry penetrates $sim$4 magnitudes fainter than 2MASS, and provides enhanced sampling of the underlying stellar populations in this heavily obscured region. Consequently, the new results supersede existing RJCE maps tied solely to brighter photometry, revealing a systematic underestimation of extinction in prior work that was based on shallower data. The new high-resolution and large-scale extinction map presented here is readily available to the community through a web query interface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا