ترغب بنشر مسار تعليمي؟ اضغط هنا

Consistency in Echo-State Networks

333   0   0.0 ( 0 )
 نشر من قبل Thomas Lymburn
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Consistency is an extension to generalized synchronization which quantifies the degree of functional dependency of a driven nonlinear system to its input. We apply this concept to echo-state networks, which are an artificial-neural network version of reservoir computing. Through a replica test we measure the consistency levels of the high-dimensional response, yielding a comprehensive portrait of the echo-state property.

قيم البحث

اقرأ أيضاً

A recurrent neural network (RNN) possesses the echo state property (ESP) if, for a given input sequence, it ``forgets any internal states of the driven (nonautonomous) system and asymptotically follows a unique, possibly complex trajectory. The lack of ESP is conventionally understood as a lack of reliable behaviour in RNNs. Here, we show that RNNs can reliably perform computations under a more general principle that accounts only for their local behaviour in phase space. To this end, we formulate a generalisation of the ESP and introduce an echo index to characterise the number of simultaneously stable responses of a driven RNN. We show that it is possible for the echo index to change with inputs, highlighting a potential source of computational errors in RNNs due to characteristics of the inputs driving the dynamics.
Echo state networks (ESNs) have been recently proved to be universal approximants for input/output systems with respect to various $L ^p$-type criteria. When $1leq p< infty$, only $p$-integrability hypotheses need to be imposed, while in the case $p= infty$ a uniform boundedness hypotheses on the inputs is required. This note shows that, in the last case, a universal family of ESNs can be constructed that contains exclusively elements that have the echo state and the fading memory properties. This conclusion could not be drawn with the results and methods available so far in the literature.
In this paper, the echo state network (ESN) memory capacity, which represents the amount of input data an ESN can store, is analyzed for a new type of deep ESNs. In particular, two deep ESN architectures are studied. First, a parallel deep ESN is pro posed in which multiple reservoirs are connected in parallel allowing them to average outputs of multiple ESNs, thus decreasing the prediction error. Then, a series architecture ESN is proposed in which ESN reservoirs are placed in cascade that the output of each ESN is the input of the next ESN in the series. This series ESN architecture can capture more features between the input sequence and the output sequence thus improving the overall prediction accuracy. Fundamental analysis shows that the memory capacity of parallel ESNs is equivalent to that of a traditional shallow ESN, while the memory capacity of series ESNs is smaller than that of a traditional shallow ESN.In terms of normalized root mean square error, simulation results show that the parallel deep ESN achieves 38.5% reduction compared to the traditional shallow ESN while the series deep ESN achieves 16.8% reduction.
294 - Peter Steiner 2021
Echo State Networks (ESNs) are a special type of recurrent neural networks (RNNs), in which the input and recurrent connections are traditionally generated randomly, and only the output weights are trained. Despite the recent success of ESNs in vario us tasks of audio, image and radar recognition, we postulate that a purely random initialization is not the ideal way of initializing ESNs. The aim of this work is to propose an unsupervised initialization of the input connections using the K-Means algorithm on the training data. We show that for a large variety of datasets this initialization performs equivalently or superior than a randomly initialized ESN whilst needing significantly less reservoir neurons. Furthermore, we discuss that this approach provides the opportunity to estimate a suitable size of the reservoir based on prior knowledge about the data.
Echo State Networks (ESNs) are recurrent neural networks that only train their output layer, thereby precluding the need to backpropagate gradients through time, which leads to significant computational gains. Nevertheless, a common issue in ESNs is determining its hyperparameters, which are crucial in instantiating a well performing reservoir, but are often set manually or using heuristics. In this work we optimize the ESN hyperparameters using Bayesian optimization which, given a limited budget of function evaluations, outperforms a grid search strategy. In the context of large volumes of time series data, such as light curves in the field of astronomy, we can further reduce the optimization cost of ESNs. In particular, we wish to avoid tuning hyperparameters per individual time series as this is costly; instead, we want to find ESNs with hyperparameters that perform well not just on individual time series but rather on groups of similar time series without sacrificing predictive performance significantly. This naturally leads to a notion of clusters, where each cluster is represented by an ESN tuned to model a group of time series of similar temporal behavior. We demonstrate this approach both on synthetic datasets and real world light curves from the MACHO survey. We show that our approach results in a significant reduction in the number of ESN models required to model a whole dataset, while retaining predictive performance for the series in each cluster.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا