ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiobjective Coverage Path Planning: Enabling Automated Inspection of Complex, Real-World Structures

63   0   0.0 ( 0 )
 نشر من قبل Kai Olav Ellefsen
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

An important open problem in robotic planning is the autonomous generation of 3D inspection paths -- that is, planning the best path to move a robot along in order to inspect a target structure. We recently suggested a new method for planning paths allowing the inspection of complex 3D structures, given a triangular mesh model of the structure. The method differs from previous approaches in its emphasis on generating and considering also plans that result in imperfect coverage of the inspection target. In many practical tasks, one would accept imperfections in coverage if this results in a substantially more energy efficient inspection path. The key idea is using a multiobjective evolutionary algorithm to optimize the energy usage and coverage of inspection plans simultaneously - and the result is a set of plans exploring the different ways to balance the two objectives. We here test our method on a set of inspection targets with large variation in size and complexity, and compare its performance with two state-of-the-art methods for complete coverage path planning. The results strengthen our confidence in the ability of our method to generate good inspection plans for different types of targets. The methods advantage is most clearly seen for real-world inspection targets, since traditional complete coverage methods have no good way of generating plans for structures with hidden parts. Multiobjective evolution, by optimizing energy usage and coverage together ensures a good balance between the two - both when 100% coverage is feasible, and when large parts of the object are hidden.



قيم البحث

اقرأ أيضاً

The problem of mixed static and dynamic obstacle avoidance is essential for path planning in highly dynamic environment. However, the paths formed by grid edges can be longer than the true shortest paths in the terrain since their headings are artifi cially constrained. Existing methods can hardly deal with dynamic obstacles. To address this problem, we propose a new algorithm combining Model Predictive Control (MPC) with Deep Deterministic Policy Gradient (DDPG). Firstly, we apply the MPC algorithm to predict the trajectory of dynamic obstacles. Secondly, the DDPG with continuous action space is designed to provide learning and autonomous decision-making capability for robots. Finally, we introduce the idea of the Artificial Potential Field to set the reward function to improve convergence speed and accuracy. We employ Unity 3D to perform simulation experiments in highly uncertain environment such as aircraft carrier decks and squares. The results show that our method has made great improvement on accuracy by 7%-30% compared with the other methods, and on the length of the path and turning angle by reducing 100 units and 400-450 degrees compared with DQN (Deep Q Network), respectively.
This paper quantitatively reveals the state-of-the-art and state-of-the-practice AI systems only achieve acceptable performance on the stringent conditions that all categories of subjects are known, which we call closed clinical settings, but fail to work in real-world clinical settings. Compared to the diagnosis task in the closed setting, real-world clinical settings pose severe challenges, and we must treat them differently. We build a clinical AI benchmark named Clinical AIBench to set up real-world clinical settings to facilitate researches. We propose an open, dynamic machine learning framework and develop an AI system named OpenClinicalAI to diagnose diseases in real-world clinical settings. The fir
Urban traffic scenarios often require a high degree of cooperation between traffic participants to ensure safety and efficiency. Observing the behavior of others, humans infer whether or not others are cooperating. This work aims to extend the capabi lities of automated vehicles, enabling them to cooperate implicitly in heterogeneous environments. Continuous actions allow for arbitrary trajectories and hence are applicable to a much wider class of problems than existing cooperative approaches with discrete action spaces. Based on cooperative modeling of other agents, Monte Carlo Tree Search (MCTS) in conjunction with Decoupled-UCT evaluates the action-values of each agent in a cooperative and decentralized way, respecting the interdependence of actions among traffic participants. The extension to continuous action spaces is addressed by incorporating novel MCTS-specific enhancements for efficient search space exploration. The proposed algorithm is evaluated under different scenarios, showing that the algorithm is able to achieve effective cooperative planning and generate solutions egocentric planning fails to identify.
This paper presents a deep-learning based CPP algorithm, called Coverage Path Planning Network (CPPNet). CPPNet is built using a convolutional neural network (CNN) whose input is a graph-based representation of the occupancy grid map while its output is an edge probability heat graph, where the value of each edge is the probability of belonging to the optimal TSP tour. Finally, a greedy search is used to select the final optimized tour. CPPNet is trained and comparatively evaluated against the TSP tour. It is shown that CPPNet provides near-optimal solutions while requiring significantly less computational time, thus enabling real-time coverage path planning in partially unknown and dynamic environments.
The problem of constrained coverage path planning involves a robot trying to cover maximum area of an environment under some constraints that appear as obstacles in the map. Out of the several coverage path planning methods, we consider augmenting th e linear sweep-based coverage method to achieve minimum energy/ time optimality along with maximum area coverage. In addition, we also study the effects of variation of different parameters on the performance of the modified method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا