ترغب بنشر مسار تعليمي؟ اضغط هنا

Abrupt changes in the graphene on Ge(001) system at the onset of surface melting

104   0   0.0 ( 0 )
 نشر من قبل Luca Persichetti
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By combining scanning probe microscopy with Raman and x-ray photoelectron spectroscopies, we investigate the evolution of CVD-grown graphene/Ge(001) as a function of the deposition temperature in close proximity to the Ge melting point, highlighting an abrupt change of the graphenes quality, morphology, electronic properties and growth mode at 930 degrees. We attribute this discontinuity to the incomplete surface melting of the Ge substrate and show how incomplete melting explains a variety of diverse and long-debated peculiar features of the graphene/Ge(001), including the characteristic nanostructuring of the Ge substrate induced by graphene overgrowth. We find that the quasi-liquid Ge layer formed close to 930 degrees is fundamental to obtain high-quality graphene, while a temperature decrease of 10 degrees already results in a wrinkled and defective graphene film.



قيم البحث

اقرأ أيضاً

In this work we shed light on the early stage of the chemical vapor deposition of graphene on Ge(001) surfaces. By a combined use of microRaman and x-ray photoelectron spectroscopies, and scanning tunneling microscopy and spectroscopy, we were able t o individuate a carbon precursor phase to graphene nucleation which coexists with small graphene domains. This precursor phase is made of C aggregates with different size, shape and local ordering which are not fully sp2 hybridized. In some atomic size regions these aggregates show a linear arrangement of atoms as well as the first signature of the hexagonal structure of graphene. The carbon precursor phase evolves in graphene domains through an ordering process, associated to a re-arrangement of the Ge surface morphology. This surface structuring represents the embryo stage of the hills-and-valleys faceting featured by the Ge(001) surface for longer deposition times, when the graphene domains coalesce to form a single layer graphene film.
We investigate the valence band structure of Pb on Ge(001) by Angle-Resolved Photoelectron Spectroscopy. Three Ge bands, G1, G2, and G3, were observed on Ge(001) 2x1 clean surface. In addition to these three bands, a forth band (R band) is found in t he 2 ML of Pb coverage. The R band continues to appear even when the surface superstructure changed. The position of the R band does not depend on Pb coverage. These results indicate that the R band derives from Ge subsurface states known as surface resonance states. Furthermore, the effective mass of G3 is significantly reduced when this forth band exists. We found that this reduction of the G3 effective mass was explained by the interaction of the G3 and the surface resonance band. Consequently, the surface resonance band penetrates the Ge subsurface region affecting the Ge bulk states. We observed the hybridization between Ge states and the surface resonance states induced by Pb adsorption.
The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these pro blems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C$_2$H$_4$) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by $30^circ$ with respect to each other. The growth mode is attributed to the mechanism when small graphene molecules nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.
To explore the origin of the Fermi level pinning in germanium we investigate the Ge(001) and Ge(001):H surfaces. The absence of relevant surface states in the case of Ge(001):H should unpin the surface Fermi level. This is not observed. For samples w ith donors as majority dopants the surface Fermi level appears close to the top of the valence band regardless of the surface structure. Surprisingly, for the passivated surface it is located below the top of the valence band allowing scanning tunneling microscopy imaging within the band gap. We argue that the well known electronic mechanism behind band bending does not apply and a more complicated scenario involving ionic degrees of freedom is therefore necessary. Experimental techniques involve four point probe electric current measurements, scanning tunneling microscopy and spectroscopy.
The results of studies of melting and crystallization processes in Bi-Ge layered film system are presented. These systems were prepared by subsequent condensation of components in vacuum. It has been shown that the melting temperature in system under study decreases with the decrease of Bi film thickness. The differential technique used for melting temperature registration enables us to measure the value of eutectic temperature $T_epsilon$ = 542 K in the system. The values of supercooling upon crystallization ($Delta T$ = 93 K) and wetting angle ($theta = 68^circ$) have been determined for Bi islands on amorphous Ge substrate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا