ترغب بنشر مسار تعليمي؟ اضغط هنا

NeuNetS: An Automated Synthesis Engine for Neural Network Design

116   0   0.0 ( 0 )
 نشر من قبل Atin Sood
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Application of neural networks to a vast variety of practical applications is transforming the way AI is applied in practice. Pre-trained neural network models available through APIs or capability to custom train pre-built neural network architectures with customer data has made the consumption of AI by developers much simpler and resulted in broad adoption of these complex AI models. While prebuilt network models exist for certain scenarios, to try and meet the constraints that are unique to each application, AI teams need to think about developing custom neural network architectures that can meet the tradeoff between accuracy and memory footprint to achieve the tight constraints of their unique use-cases. However, only a small proportion of data science teams have the skills and experience needed to create a neural network from scratch, and the demand far exceeds the supply. In this paper, we present NeuNetS : An automated Neural Network Synthesis engine for custom neural network design that is available as part of IBMs AI OpenScales product. NeuNetS is available for both Text and Image domains and can build neural networks for specific tasks in a fraction of the time it takes today with human effort, and with accuracy similar to that of human-designed AI models.



قيم البحث

اقرأ أيضاً

Neural network (NN) models are increasingly used in scientific simulations, AI, and other high performance computing (HPC) fields to extract knowledge from datasets. Each dataset requires tailored NN model architecture, but designing structures by ha nd is a time-consuming and error-prone process. Neural architecture search (NAS) automates the design of NN architectures. NAS attempts to find well-performing NN models for specialized datsets, where performance is measured by key metrics that capture the NN capabilities (e.g., accuracy of classification of samples in a dataset). Existing NAS methods are resource intensive, especially when searching for highly accurate models for larger and larger datasets. To address this problem, we propose a performance estimation strategy that reduces the resources for training NNs and increases NAS throughput without jeopardizing accuracy. We implement our strategy via an engine called PEng4NN that plugs into existing NAS methods; in doing so, PEng4NN predicts the final accuracy of NNs early in the training process, informs the NAS of NN performance, and thus enables the NAS to terminate training NNs early. We assess our engine on three diverse datasets (i.e., CIFAR-100, Fashion MNIST, and SVHN). By reducing the training epochs needed, our engine achieves substantial throughput gain; on average, our engine saves 61% to 82% of training epochs, increasing throughput by a factor of 2.5 to 5 compared to a state-of-the-art NAS method. We achieve this gain without compromising accuracy, as we demonstrate with two key outcomes. First, across all our tests, between 74% and 97% of the ground truth best models lie in our set of predicted best models. Second, the accuracy distributions of the ground truth best models and our predicted best models are comparable, with the mean accuracy values differing by at most .7 percentage points across all tests.
Deep neural networks (DNN) have been shown to be useful in a wide range of applications. However, they are also known to be vulnerable to adversarial samples. By transforming a normal sample with some carefully crafted human imperceptible perturbatio ns, even highly accurate DNN make wrong decisions. Multiple defense mechanisms have been proposed which aim to hinder the generation of such adversarial samples. However, a recent work show that most of them are ineffective. In this work, we propose an alternative approach to detect adversarial samples at runtime. Our main observation is that adversarial samples are much more sensitive than normal samples if we impose random mutations on the DNN. We thus first propose a measure of `sensitivity and show empirically that normal samples and adversarial samples have distinguishable sensitivity. We then integrate statistical hypothesis testing and model mutation testing to check whether an input sample is likely to be normal or adversarial at runtime by measuring its sensitivity. We evaluated our approach on the MNIST and CIFAR10 datasets. The results show that our approach detects adversarial samples generated by state-of-the-art attacking methods efficiently and accurately.
While variable selection is essential to optimize the learning complexity by prioritizing features, automating the selection process is preferred since it requires laborious efforts with intensive analysis otherwise. However, it is not an easy task t o enable the automation due to several reasons. First, selection techniques often need a condition to terminate the reduction process, for example, by using a threshold or the number of features to stop, and searching an adequate stopping condition is highly challenging. Second, it is uncertain that the reduced variable set would work well; our preliminary experimental result shows that well-known selection techniques produce different sets of variables as a result of reduction (even with the same termination condition), and it is hard to estimate which of them would work the best in future testing. In this paper, we demonstrate the potential power of our approach to the automation of selection process that incorporates well-known selection methods identifying important variables. Our experimental results with two public network traffic data (UNSW-NB15 and IDS2017) show that our proposed method identifies a small number of core variables, with which it is possible to approximate the performance to the one with the entire variables.
End-to-end performance estimation and measurement of deep neural network (DNN) systems become more important with increasing complexity of DNN systems consisting of hardware and software components. The methodology proposed in this paper aims at a re duced turn-around time for evaluating different design choices of hardware and software components of DNN systems. This reduction is achieved by moving the performance estimation from the implementation phase to the concept phase by employing virtual hardware models instead of gathering measurement results from physical prototypes. Deep learning compilers introduce hardware-specific transformations and are, therefore, considered a part of the design flow of virtual system models to extract end-to-end performance estimations. To validate the run-time accuracy of the proposed methodology, a system processing the DilatedVGG DNN is realized both as virtual system model and as hardware implementation. The results show that up to 92 % accuracy can be reached in predicting the processing time of the DNN inference.
Target encoding is an effective technique to deliver better performance for conventional machine learning methods, and recently, for deep neural networks as well. However, the existing target encoding approaches require significant increase in the le arning capacity, thus demand higher computation power and more training data. In this paper, we present a novel and efficient target encoding scheme, MUTE to improve both generalizability and robustness of a target model by understanding the inter-class characteristics of a target dataset. By extracting the confusion level between the target classes in a dataset, MUTE strategically optimizes the Hamming distances among target encoding. Such optimized target encoding offers higher classification strength for neural network models with negligible computation overhead and without increasing the model size. When MUTE is applied to the popular image classification networks and datasets, our experimental results show that MUTE offers better generalization and defense against the noises and adversarial attacks over the existing solutions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا