ترغب بنشر مسار تعليمي؟ اضغط هنا

Sign of CP Violating Phase in Quarks and Leptons

203   0   0.0 ( 0 )
 نشر من قبل Kenta Takagi
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the relation between the CP violation of the quark mixing and that of the lepton mixing by investigating a CP violating observable, the Jarlskog invariant, as well as the CP violating Dirac phase. The down-type quark mass matrix with three zeros is given in terms of the minimal number of parameters, while the up-type quark mass matrix is diagonal. These quark mass matrices leading to the successful CKM mixing angles and CP violation are embedded in both the Pati--Salam and SU(5) models. The leptonic Jarlskog invariant $J_{CP}^l$ (as well as CP violating Dirac phase) is examined for two cases: the neutrino mass matrix is diagonal or non-diagonal, where no additional CP violating phase is introduced apart from the Majorana phases. In the case of the diagonal neutrino mass matrix, the favorable sign of the leptonic CP violation is obtained, however, the magnitude of $J_{CP}^l$ is at most ${cal O}(10^{-4})$, which is too small compared with the expected value from the observation $-0.02$. In the case of the non-diagonal neutrino mass matrix where the tri-bimaximal mixing pattern is taken, we obtain the successful $J_{CP}^l$ up to its sign.



قيم البحث

اقرأ أيضاً

A model independent analysis of the leptonic Dirac CP-violating phase ({delta}) is presented. The analysis uses the experimentally determined values of the mixing angles in the lepton mixing matrix in order to explore the allowed values for {delta} a nd possible general forms for the charged lepton mixing matrix. This is done under two general assumptions: 1) that the mixing matrix in the neutrino sector is the so-called tribimaximal matrix and hence the non zero value for {theta}13 arises due to the mixing matrix in the charged lepton sector and 2) the charged lepton mixing matrix is parametrized in terms of three angles and one phase. It is found that any value of {delta} is still consistent with the data and that, considering the assumptions above, regardless of the value for {delta}, the 1-3 mixing angle in the charged lepton sector is small but non zero and the 2-3 mixing angle can take values in only two possible small ranges around 0 and {pi}/2 respectively.
139 - Xinyi Zhang , Bo-Qiang Ma 2012
The recent established large $theta_{13}$ in neutrino mixing provides an optimistic possibility for the investigation of the CP violation, therefore it is necessary to study the CP-violating phase $delta_{rm CP}$ in detail. Based on the maximal CP vi olation hypothesis in the original Kobayashi-Maskawa (KM) scheme of neutrino mixing matrix, i.e., $delta_{rm KM}=90^circ$, we calculate $delta_{rm CK}$ for both quarks and leptons in the Chau-Keung (CK) scheme of the standard parametrization and find that $delta^{mathrm{quark}}_{mathrm{CK}}=(68.62^{+0.89}_{-0.81})^circ$ and $delta^{mathrm{lepton}}_{mathrm{CK}}=(85.39^{+4.76}_{-1.82})^circ$, provided with three mixing angles to be given. We also examine the sensitivity of $|V_{ij}|$ and $|U_{ij}|$ to $delta_{rm CK}$ and $delta_{rm KM}$. As a convention-independent investigation, we discuss the $Phi$ matrix, which has elements correspond to angles of the unitarity triangles. We demonstrate the $Phi$ matrices for both quark and lepton sectors and discuss the implications as well as the variations of the $Phi$ matrix elements with $delta_{rm CP}$.
We propose that the CP violating phase in the CKM mixing matrix is identical to the CP phases responsible for the spontaneous CP violation in the Higgs potential. A specific multi-Higgs model with Peccei-Quinn (PQ) symmetry is constructed to realize this idea. The CP violating phase does not vanish when all Higgs masses become large. There are flavor changing neutral current (FCNC) interactions mediated by neutral Higgs bosons at the tree level. However, unlike general multi-Higgs models, the FCNC Yukawa couplings are fixed in terms of the quark masses and CKM mixing angles. Implications for meson-anti-meson mixing, including recent data on $D-bar D$ mixing, and neutron electric dipole moment (EDM) are studied. We find that the neutral Higgs boson masses can be at the order of one hundred GeV. The neutron EDM can be close to the present experimental upper bound.
100 - Harald Fritzsch 2011
The weak bosons consist of two fermions, bound by a new confining gauge force. The mass scale of this new interaction is determined. At energies below 0.5 TeV the standard electroweak theory is valid. A neutral isoscalar weak boson X must exist - its mass is less than 1 TeV. It will decay mainly into quark and lepton pairs and into two or three weak bosons. Above the mass of 1 TeV one finds excitations of the weak bosons, which mainly decay into pairs of weak bosons. Leptons and quarks consist of a fermion and a scalar. Pairs of leptons and pairs of quarks form resonances at very high energy.
The non-Abelian discrete symmetry D(7) of the heptagon is successfully applied to both quark and lepton mass matrices, including CP violation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا