ترغب بنشر مسار تعليمي؟ اضغط هنا

Composite Weak Bosons, Leptons and Quarks

55   0   0.0 ( 0 )
 نشر من قبل Shun Zhou
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Harald Fritzsch




اسأل ChatGPT حول البحث

The weak bosons consist of two fermions, bound by a new confining gauge force. The mass scale of this new interaction is determined. At energies below 0.5 TeV the standard electroweak theory is valid. A neutral isoscalar weak boson X must exist - its mass is less than 1 TeV. It will decay mainly into quark and lepton pairs and into two or three weak bosons. Above the mass of 1 TeV one finds excitations of the weak bosons, which mainly decay into pairs of weak bosons. Leptons and quarks consist of a fermion and a scalar. Pairs of leptons and pairs of quarks form resonances at very high energy.

قيم البحث

اقرأ أيضاً

107 - Harald Fritzsch 2010
The weak bosons, leptons and quarks are considered as composite particles. The interaction of the constituents is a confining gauge interaction. The standard electroweak model is a low energy approximation. The mixing of the neutral weak boson with t he photon is a dynamical mechanism, similar to the mixing between the photon and the rho-meson in QCD. This mixing provides information about the energy scale of the confining gauge force. It must be less than 1 TeV. At and above this energy many narrow resonances should exist, which decay into weak bosons and into lepton and quark pairs. Above 1 TeV excited leptons should exist, which decay into leptons under emission of a weak boson or a photon. These new states can be observed with the detectors at the Large Hadron Collider in CERN.
220 - Harald Fritzsch 2015
In a composite model of the weak bosons the p-wave bosons are studied. The state with the lowest mass is identified with the boson, which has been observed at the LHC. Specific properties of the excited bosons are studied, in particular their decays into weak bosons and photons. Such decays might have been observed recently with the ATLAS detector at the Large Hadron Collider.
78 - Harald Fritzsch 2016
In a composite model of the weak bosons the p-wave bosons are studied. The state with the lowest mass is identified with the boson, which has been discovered at the LHC. Specific properties of the excited bosons are discussed, in particular their dec ays into weak bosons and photons. Recently a two photon signal has been observed, which might come from the decay of a neutral heavy boson with a mass of about 0.75 TeV. This particle could be an excited weak tensor boson.
The non-Abelian discrete symmetry D(7) of the heptagon is successfully applied to both quark and lepton mass matrices, including CP violation.
We discuss the relation between the CP violation of the quark mixing and that of the lepton mixing by investigating a CP violating observable, the Jarlskog invariant, as well as the CP violating Dirac phase. The down-type quark mass matrix with three zeros is given in terms of the minimal number of parameters, while the up-type quark mass matrix is diagonal. These quark mass matrices leading to the successful CKM mixing angles and CP violation are embedded in both the Pati--Salam and SU(5) models. The leptonic Jarlskog invariant $J_{CP}^l$ (as well as CP violating Dirac phase) is examined for two cases: the neutrino mass matrix is diagonal or non-diagonal, where no additional CP violating phase is introduced apart from the Majorana phases. In the case of the diagonal neutrino mass matrix, the favorable sign of the leptonic CP violation is obtained, however, the magnitude of $J_{CP}^l$ is at most ${cal O}(10^{-4})$, which is too small compared with the expected value from the observation $-0.02$. In the case of the non-diagonal neutrino mass matrix where the tri-bimaximal mixing pattern is taken, we obtain the successful $J_{CP}^l$ up to its sign.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا