ﻻ يوجد ملخص باللغة العربية
Accurate, nontrivial quantum operations on many qubits are experimentally challenging. As opposed to the standard approach of compiling larger unitaries into sequences of 2-qubit gates, we propose a protocol on Hamiltonian control fields which implements highly selective multi-qubit gates in a strongly-coupled many-body quantum system. We exploit the selectiveness of resonant driving to exchange only 2 out of $2^N$ eigenstates of some background Hamiltonian, and discuss a basis transformation, the eigengate, that makes this operation relevant to the computational basis. The latter has a second use as a Hahn echo which undoes the dynamical phases due to the background Hamiltonian. We find that the error of such protocols scales favourably with the gate time as $t^{-2}$, but the protocol becomes inefficient with a growing number of qubits N. The framework is numerically tested in the context of a spin chain model first described by Polychronakos, for which we show that an earlier solution method naturally gives rise to an eigengate. Our techniques could be of independent interest for the theory of driven many-body systems.
The spectral form factor (SFF), characterizing statistics of energy eigenvalues, is a key diagnostic of many-body quantum chaos. In addition, partial spectral form factors (pSFFs) can be defined which refer to subsystems of the many-body system. They
Eigenstates of fully many-body localized (FMBL) systems can be organized into spin algebras based on quasilocal operators called l-bits. These spin algebras define quasilocal l-bit measurement ($tau^z_i$) and l-bit flip ($tau^x_i$) operators. For a d
We demonstrate that arbitrary time evolutions of many-body quantum systems can be reversed even in cases when only part of the Hamiltonian can be controlled. The reversed dynamics obtained via optimal control --contrary to standard time-reversal proc
Thermodynamics of quantum systems out-of-equilibrium is very important for the progress of quantum technologies, however, the effects of many body interactions and their interplay with temperature, different drives and dynamical regimes is still larg
A quantum simulator is a restricted class of quantum computer that controls the interactions between quantum bits in a way that can be mapped to certain difficult quantum many-body problems. As more control is exerted over larger numbers of qubits, t