ترغب بنشر مسار تعليمي؟ اضغط هنا

Layered semiconductor EuTe 4 with charge density wave order in square tellurium sheets

127   0   0.0 ( 0 )
 نشر من قبل Dong Wu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a novel quasi-two dimensional compound of EuTe4 hosting charge density waves (CDW) instability. The compound has a crystallographic structure in a orthorhombic space group Pmmn (No.59) with cell parameters a = 4.6347(2){AA}, b = 4.5119(2){AA}, c = 15.6747(10){AA} at room temperature. The pristine structure contains consecutive near-square Te sheets separated by corrugated Eu-Te slabs. Upon cooling, the compound experiences a phase transition near 255 K. X-ray crystallographic analysis and transmission electron microscopy (TEM) measurements reveal strong structural distortions in the low temperature phase, showing a superstructure with a periodic formation of Te-trimers in the monolayer Te sheets, yielding evidence for the formation of CDW order. The charge transport properties show a semiconducting behavior in the CDW state. Density functional theory calculations reveals a Fermi surface nesting driven instability with a nesting vector in good agreement with the one observed experimentally. Our finding provides a promising system for the study of CDW driven 2D semiconducting mechanisms, which would shed a new light on exploring novel 2D semiconductors with collective electronic states.

قيم البحث

اقرأ أيضاً

The so-called stripe phase of the manganites is an important example of the complex behaviour of metal oxides, and has long been interpreted as the localisation of charge at atomic sites. Here, we demonstrate via resistance measurements on La_{0.50}C a_{0.50}MnO_3 that this state is in fact a prototypical charge density wave (CDW) which undergoes collective transport. Dramatic resistance hysteresis effects and broadband noise properties are observed, both of which are typical of sliding CDW systems. Moreover, the high levels of disorder typical of manganites result in behaviour similar to that of well-known disordered CDW materials. Our discovery that the manganite superstructure is a CDW shows that unusual transport and structural properties do not require exotic physics, but can emerge when a well-understood phase (the CDW) coexists with disorder.
Metallization of 1T-TaS2 is generally initiated at the domain boundary of charge density wave (CDW), at the expense of its long-range order. However, we demonstrate in this study that the metallization of 1T-TaS2 can be also realized without breaking the long-range CDW order upon surface alkali doping. By using scanning tunneling microscopy, we find the long-range CDW order is always persisting, and the metallization is instead associated with additional in-gap excitations. Interestingly, the in-gap excitation is near the top of the lower Hubbard band, in contrast to a conventional electron-doped Mott insulator where it is beneath the upper Hubbard band. In combination with the numerical calculations, we suggest that the appearance of the in-gap excitations near the lower Hubbard band is mainly due to the effectively reduced on-site Coulomb energy by the adsorbed alkali ions.
In the optical conductivity of four different manganites with commensurate charge order (CO), strong peaks appear in the meV range below the ordering temperature T_{CO}. They are similar to those reported for one-dimensional charge density waves (CDW ) and are assigned to pinned phasons. The peaks and their overtones allow one to obtain, for La{1-n/8}Ca{n/8}$MnO{3} with n = 5, 6, the electron-phonon coupling, the effective mass of the CO system, and its contribution to the dielectric constant. These results support a description of the CO in La-Ca manganites in terms of moderately weak-coupling and of the CDW theory.
Charge density waves in transition metal dichalcogenides have been intensively studied for their close correlation with Mott insulator, charge-transfer insulator, and superconductor. VTe2 monolayer recently comes into sight because of its prominent e lectron correlations and the mysterious origin of CDW orders. As a metal of more than one type of charge density waves, it involves complicated electron-electron and electron-phonon interactions. Through a scanning tunneling microscopy study, we observed triple-Q 4-by-4 and single-Q 4-by-1 modulations with significant charge and orbital separation. The triple-Q 4-by-4 order arises strongly from the p-d hybridized states, resulting in a charge distribution in agreement with the V-atom clustering model. Associated with a lower Fermi level, the local single-Q 4-by-1 electronic pattern is generated with the p-d hybridized states remaining 4-by-4 ordered. In the spectroscopic study, orbital- and atomic- selective charge-density-wave gaps with the size up to ~400 meV were resolved on the atomic scale.
The capability to isolate one to few unit-cell thin layers from the bulk matrix of layered compounds opens fascinating prospects to engineer novel electronic phases. However, a comprehensive study of the thickness dependence and of potential extrinsi c effects are paramount to harness the electronic properties of such atomic foils. One striking example is the charge density wave (CDW) transition temperature in layered dichalcogenides whose thickness dependence remains unclear in the ultrathin limit. Here we present a detailed study of the thickness and temperature dependences of the CDW in VSe$_2$ by scanning tunnelling microscopy (STM). We show that mapping the real-space CDW periodicity over a broad thickness range unique to STM provides essential insight. We introduce a robust derivation of the local order parameter and transition temperature based on the real space charge modulation amplitude. Both quantities exhibit a striking non-monotonic thickness dependence that we explain in terms of a 3D to 2D dimensional crossover in the FS topology. This finding highlights thickness as a true tuning parameter of the electronic ground state and reconciles seemingly contradicting thickness dependencies determined in independent transport studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا