ﻻ يوجد ملخص باللغة العربية
Inspired by complexity and diversity of biological neurons, our group proposed quadratic neurons by replacing the inner product in current artificial neurons with a quadratic operation on input data, thereby enhancing the capability of an individual neuron. Along this direction, we are motivated to evaluate the power of quadratic neurons in popular network architectures, simulating human-like learning in the form of quadratic-neuron-based deep learning. Our prior theoretical studies have shown important merits of quadratic neurons and networks in representation, efficiency, and interpretability. In this paper, we use quadratic neurons to construct an encoder-decoder structure, referred as the quadratic autoencoder, and apply it to low-dose CT denoising. The experimental results on the Mayo low-dose CT dataset demonstrate the utility of quadratic autoencoder in terms of image denoising and model efficiency. To our best knowledge, this is the first time that the deep learning approach is implemented with a new type of neurons and demonstrates a significant potential in the medical imaging field.
The extensive use of medical CT has raised a public concern over the radiation dose to the patient. Reducing the radiation dose leads to increased CT image noise and artifacts, which can adversely affect not only the radiologists judgement but also t
Low-dose CT has been a key diagnostic imaging modality to reduce the potential risk of radiation overdose to patient health. Despite recent advances, CNN-based approaches typically apply filters in a spatially invariant way and adopt similar pixel-le
Lowering the radiation dose in computed tomography (CT) can greatly reduce the potential risk to public health. However, the reconstructed images from the dose-reduced CT or low-dose CT (LDCT) suffer from severe noise, compromising the subsequent dia
Continuous monitoring of cardiac health under free living condition is crucial to provide effective care for patients undergoing post operative recovery and individuals with high cardiac risk like the elderly. Capacitive Electrocardiogram (cECG) is o
Recent years have witnessed growing interest in machine learning-based models and techniques for low-dose X-ray CT (LDCT) imaging tasks. The methods can typically be categorized into supervised learning methods and unsupervised or model-based learnin