ﻻ يوجد ملخص باللغة العربية
The computation of the parton distribution functions (PDF) or distribution amplitudes (DA) of hadrons from first principles lattice QCD constitutes a central open problem. In this study, we present and evaluate the efficiency of a selection of methods for inverse problems to reconstruct the full $x$-dependence of PDFs. Our starting point are the so called Ioffe time PDFs, which are accessible from Euclidean time calculations in conjunction with a matching procedure. Using realistic mock data tests, we find that the ill-posed incomplete Fourier transform underlying the reconstruction requires careful regularization, for which both the Bayesian approach as well as neural networks are efficient and flexible choices.
We present results for the unpolarized parton distribution function of the nucleon computed in lattice QCD at the physical pion mass. This is the first study of its kind employing the method of Ioffe time pseudo-distributions. Beyond the reconstructi
We present a new method, based on Gaussian process regression, for reconstructing the continuous $x$-dependence of parton distribution functions (PDFs) from quasi-PDFs computed using lattice QCD. We examine the origin of the unphysical oscillations s
We present a calculation of the pion valence quark distribution extracted using the formalism of reduced Ioffe time pseudo-distributions or more commonly known as pseudo-PDFs. Our calculation is carried out on two different 2+1 flavor QCD ensembles u
We present the first direct calculation of the transversity parton distribution function within the nucleon from lattice QCD. The calculation is performed using simulations with the light quark mass fixed to its physical value and at one value of the
We present results on the quark unpolarized, helicity and transversity parton distributions functions of the nucleon. We use the quasi-parton distribution approach within the lattice QCD framework and perform the computation using an ensemble of twis