ﻻ يوجد ملخص باللغة العربية
The use of two-site Lindblad dissipator to generate thermal states and study heat transport raised to prominence since [J. Stat. Mech. (2009) P02035] by Prosen and v{Z}nidariv{c}. Here we propose a variant of this method based on detailed balance of internal levels of the two site Hamiltonian and characterize its performance. We study the thermalization profile in the chain, the effective temperatures achieved by different single and two-site observables, and we also investigate the decay of two-time correlations. We find that at a large enough temperature the steady state approaches closely a thermal state, with a relative error below 1% for the inverse temperature estimated from different observables.
The approach to thermal equilibrium, or thermalization, in isolated quantum systems is among the most fundamental problems in statistical physics. Recent theoretical studies have revealed that thermalization in isolated quantum systems has several re
By calculating correlation functions for the Lieb-Liniger model based on the algebraic Bethe ansatz method, we conduct a finite-size scaling analysis of the eigenstate thermalization hypothesis (ETH) which is considered to be a possible mechanism of
We investigate experimentally a two-dimensional rocking ratchet for cold atoms, realized by using a driven three-beam dissipative optical lattice. AC forces are applied in perpendicular directions by phase-modulating two of the lattice beams. As pred
Complexity of dynamics is at the core of quantum many-body chaos and exhibits a hierarchical feature: higher-order complexity implies more chaotic dynamics. Conventional ergodicity in thermalization processes is a manifestation of the lowest order co
By exploring a phase space hydrodynamics description of one-dimensional free Fermi gas, we discuss how systems settle down to steady states described by the generalized Gibbs ensembles through quantum quenches. We investigate time evolutions of the F