ﻻ يوجد ملخص باللغة العربية
Nanolaminated materials are important because of their exceptional properties and wide range of applications. Here, we demonstrate a general approach to synthesize a series of Zn-based MAX phases and Cl-terminated MXenes originating from the replacement reaction between the MAX phase and the late transition metal halides. The approach is a top-down route that enables the late transitional element atom (Zn in the present case) to occupy the A site in the pre-existing MAX phase structure. Using this replacement reaction between Zn element from molten ZnCl2 and Al element in MAX phase precursors (Ti3AlC2, Ti2AlC, Ti2AlN, and V2AlC), novel MAX phases Ti3ZnC2, Ti2ZnC, Ti2ZnN, and V2ZnC were synthesized. When employing excess ZnCl2, Cl terminated MXenes (such as Ti3C2Cl2 and Ti2CCl2) were derived by a subsequent exfoliation of Ti3ZnC2 and Ti2ZnC due to the strong Lewis acidity of molten ZnCl2. These results indicate that A-site element replacement in traditional MAX phases by late transition metal halides opens the door to explore MAX phases that are not thermodynamically stable at high temperature and would be difficult to synthesize through the commonly employed powder metallurgy approach. In addition, this is the first time that exclusively Cl-terminated MXenes were obtained, and the etching effect of Lewis acid in molten salts provides a green and viable route to prepare MXenes through an HF-free chemical approach.
New MAX phases Ti2(AlxCu1-x)N and Nb2CuC were synthesized by A-site replacement by reacting Ti2AlN and Nb2AlC, respectively, with CuCl2 or CuI molten salt. X-ray diffraction, scanning electron microscopy, and atomically-resolved scanning transmission
Surface terminations for 2D MXene have dramatic impacts on physicochemical properties. The commonly etching methods usually introduce -F surface termination or metallic into MXene. Here, we present a new molten salt assisted electrochemical etching (
The MAX phases are a family of of ternary layered material with both metal and ceramic properties, and it is also precursor ma-terials for synthesis of two-dimensional MXenes. The theory predicted that there are more than 600 stable ternary layered M
Chemical exfoliation of MAX phases into two-dimensional (2D) MXenes can be considered as a major breakthrough in the synthesis of novel 2D systems. To gain insight into the exfoliation possibility of MAX phases and to identify which MAX phases are pr
Two-dimensional carbides and nitrides of transition metals, known as MXenes, are a fast-growing family of 2D materials that draw attention as energy storage materials. So far, MXenes are mainly prepared from Al-containing MAX phases (where A = Al) by