ترغب بنشر مسار تعليمي؟ اضغط هنا

Delayed Stellar Mass Assembly in the Low Surface Brightness Dwarf Galaxy KDG215

118   0   0.0 ( 0 )
 نشر من قبل John M. Cannon
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present HI spectral line and optical broadband images of the nearby low surface brightness dwarf galaxy KDG215. The HI images, acquired with the Karl G. Jansky Very Large Array (VLA), reveal a dispersion dominated ISM with only weak signatures of coherent rotation. The HI gas reaches a peak mass surface density of 6 M$_{odot}$ pc$^{-2}$ at the location of the peak surface brightness in the optical and the UV. Although KDG215 is gas-rich, the H$alpha$ non-detection implies a very low current massive star formation rate. In order to investigate the recent evolution of this system, we have derived the recent and lifetime star formation histories from archival Hubble Space Telescope images. The recent star formation history shows a peak star formation rate $sim$1 Gyr ago, followed by a decreasing star formation rate to the present day quiescent state. The cumulative star formation history indicates that a significant fraction of the stellar mass assembly in KDG215 has occurred within the last 1.25 Gyr. KDG215 is one of only a few known galaxies which demonstrates such a delayed star formation history. While the ancient stellar population (predominantly red giants) is prominent, the look-back time by which 50% of the mass of all stars ever formed had been created is among the youngest of any known galaxy.



قيم البحث

اقرأ أيضاً

We introduce a method for producing a galaxy sample unbiased by surface brightness and stellar mass, by selecting star-forming galaxies via the positions of core-collapse supernovae (CCSNe). Whilst matching $sim$2400 supernovae from the SDSS-II Super nova Survey to their host galaxies using IAC Stripe 82 legacy coadded imaging, we find $sim$150 previously unidentified low surface brightness galaxies (LSBGs). Using a sub-sample of $sim$900 CCSNe, we infer CCSN-rate and star-formation rate densities as a function of galaxy stellar mass, and the star-forming galaxy stellar mass function. Resultant star-forming galaxy number densities are found to increase following a power-law down to our low mass limit of $sim10^{6.4}$ M$_{odot}$ by a single Schechter function with a faint-end slope of $alpha = -1.41$. Number densities are consistent with those found by the EAGLE simulations invoking a $Lambda$-CDM cosmology. Overcoming surface brightness and stellar mass biases is important for assessment of the sub-structure problem. In order to estimate galaxy stellar masses, a new code for the calculation of galaxy photometric redshifts, zMedIC, is also presented, and shown to be particularly useful for small samples of galaxies.
Low-surface-brightness galaxies (LSBGs) -- defined as systems that are fainter than the surface-brightness limits of past wide-area surveys -- form the overwhelming majority of galaxies in the dwarf regime (M* < 10^9 MSun). Using NewHorizon, a high-r esolution cosmological simulation, we study the origin of LSBGs and explain why LSBGs at similar stellar mass show the large observed spread in surface brightness. New Horizon galaxies populate a well-defined locus in the surface brightness -- stellar mass plane, with a spread of ~3 mag arcsec^-2, in agreement with deep SDSS Stripe data. Galaxies with fainter surface brightnesses today are born in regions of higher dark-matter density. This results in faster gas accretion and more intense star formation at early epochs. The stronger resultant supernova feedback flattens gas profiles at a faster rate which, in turn, creates shallower stellar profiles (i.e. more diffuse systems) more rapidly. As star formation declines towards late epochs (z<1), the larger tidal perturbations and ram pressure experienced by these systems (due to their denser local environments) accelerate the divergence in surface brightness, by increasing their effective radii and reducing star formation respectively. A small minority of dwarfs depart from the main locus towards high surface brightnesses, making them detectable in past wide surveys. These systems have anomalously high star-formation rates, triggered by recent, fly-by or merger-driven starbursts. We note that objects considered extreme/anomalous at the depth of current datasets, e.g. `ultra-diffuse galaxies, actually dominate the predicted dwarf population and will be routinely visible in future surveys like LSST.
With the aim of assessing if low surface brightness galaxies host stellar bars, and study the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 dataset to construct a large volume-limited sample of gala xies, and segregate the galaxies as low and high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than the one found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas-richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars shows a strong dependence on the surface brightness, and although some of this dependence is attributed to the gas content, even at fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.
We report an expanded sample of visual morphological classifications from the Galaxy and Mass Assembly (GAMA) survey phase two, which now includes 7,556 objects (previously 3,727 in phase one). We define a local (z <0.06) sample and classify galaxies into E, S0-Sa, SB0-SBa, Sab-Scd, SBab-SBcd, Sd-Irr, and little blue spheroid types. Using these updated classifications, we derive stellar mass function fits to individual galaxy populations divided both by morphological class and more general spheroid- or disk-dominated categories with a lower mass limit of log(Mstar/Msun) = 8 (one dex below earlier morphological mass function determinations). We find that all individual morphological classes and the combined spheroid-/bulge-dominated classes are well described by single Schechter stellar mass function forms. We find that the total stellar mass densities for individual galaxy populations and for the entire galaxy population are bounded within our stellar mass limits and derive an estimated total stellar mass density of rho_star = 2.5 x 10^8 Msun Mpc^-3 h_0.7, which corresponds to an approximately 4% fraction of baryons found in stars. The mass contributions to this total stellar mass density by galaxies that are dominated by spheroidal components (E and S0-Sa classes) and by disk components (Sab-Scd and Sd-Irr classes) are approximately 70% and 30%, respectively.
We present Halpha rotation curves for a sample of 15 dwarf and LSB galaxies. From these, we derive limits on the slopes of the central mass distributions. Assuming the density distributions of dark matter halos follow a power-law at small radii, rh o(r)~r^(-alpha), we find inner slopes in the range 0<alpha<1 for most galaxies. In general, halos with constant density cores (alpha=0) provide somewhat better fits, but the majority of our galaxies (~75%) are also consistent with alpha=1, provided that the R-band mass-to-light ratios are smaller than about 2. Halos with alpha=1.5, however, are ruled out in virtually every case. To investigate the robustness of these results we discuss and model several possible causes of systematic errors including non-circular motions, slit width, seeing, and slit alignment errors. Taking the associated uncertainties into account, we conclude that even for the 25% of the cases where alpha=1 seems inconsistent with the rotation curves, we cannot rule out cusp slopes this steep. Inclusion of literature samples similar to the one presented here leads to the same conclusion when possible systematic errors are taken into account. In the ongoing debate on whether the rotation curves of dwarf and LSB galaxies are consistent with predictions for a CDM universe, we argue that our sample and the literature samples discussed in this paper provide insufficient evidence to rule out halos with alpha=1. At the same time, we note that none of the galaxies in these samples require halos with steep cusps, as most are equally well or better explained by constant density cores. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا