ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Ubiquity and Stellar Luminosity Dependence of Exocometary CO Gas: Detection around M Dwarf TWA 7

67   0   0.0 ( 0 )
 نشر من قبل Luca Matr\\`a
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Millimeter observations of CO gas in planetesimal belts show a high detection rate around A stars, but few detections for later type stars. We present the first CO detection in a planetesimal belt around an M star, TWA 7. The optically thin CO (J=3-2) emission is co-located with previously identified dust emission from the belt, and the emission velocity structure is consistent with Keplerian rotation around the central star. The detected CO is not well shielded against photodissociation, and must thus be continuously replenished by gas release from exocomets within the belt. We analyze in detail the process of exocometary gas release and destruction around young M dwarfs and how this process compares to earlier type stars. Taking these differences into account, we find that CO generation through exocometary gas release naturally explains the increasing CO detection rates with stellar luminosity, mostly because the CO production rate from the collisional cascade is directly proportional to stellar luminosity. More luminous stars will therefore on average host more massive (and hence more easily detectable) exocometary CO disks, leading to the higher detection rates observed. The current CO detection rates are consistent with a ubiquitous release of exocometary gas in planetesimal belts, independent of spectral type.



قيم البحث

اقرأ أيضاً

We have obtained Hubble Space Telescope (HST) coronagraphic observations of the circumstellar disk around M star TWA 7 using the STIS instrument in visible light. Together with archival observations including HST/NICMOS using the F160W filter and Ver y Large Telescope/SPHERE at $H$-band in polarized light, we investigate the system in scattered light. By studying this nearly face-on system using geometric disk models and Henyey--Greenstein phase functions, we report new discovery of a tertiary ring and a clump. We identify a layered architecture: three rings, a spiral, and an ${approx}150$ au$^2$ elliptical clump. The most extended ring peaks at $28$ au, and the other components are on its outskirts. Our point source detection limit calculations demonstrate the necessity of disk modeling in imaging fainter planets. Morphologically, we witness a clockwise spiral motion, and the motion pattern is consistent with both solid body and local Keplerian; we also observe underdensity regions for the secondary ring that might result from mean motion resonance or moving shadows: both call for re-observations to determine their nature. Comparing multi-instrument observations, we obtain blue STIS-NICMOS color, STIS-SPHERE radial distribution peak difference for the tertiary ring, and high SPHERE-NICMOS polarization fraction; these aspects indicate that TWA 7 could retain small dust particles. By viewing the debris disk around M star TWA 7 at a nearly face-on vantage point, our study allows for the understanding of such disks in scattered light in both system architecture and dust property.
109 - S. Marino , M. Flock , Th. Henning 2020
The presence of CO gas around 10-50 Myr old A stars with debris discs has sparked debate on whether the gas is primordial or secondary. Since secondary gas released from planetesimals is poor in H$_2$, it was thought that CO would quickly photodissoc iate never reaching the high levels observed around the majority of A stars with bright debris discs. Kral et al. 2019 showed that neutral carbon produced by CO photodissociation can effectively shield CO and potentially explain the high CO masses around 9 A stars with bright debris discs. Here we present a new model that simulates the gas viscous evolution, accounting for carbon shielding and how the gas release rate decreases with time as the planetesimal disc loses mass. We find that the present gas mass in a system is highly dependant on its evolutionary path. Since gas is lost on long timescales, it can retain a memory of the initial disc mass. Moreover, we find that gas levels can be out of equilibrium and quickly evolving from a shielded onto an unshielded state. With this model, we build the first population synthesis of gas around A stars, which we use to constrain the disc viscosity. We find a good match with a high viscosity ($alphasim0.1$), indicating that gas is lost on timescales $sim1-10$ Myr. Moreover, our model also shows that high CO masses are not expected around FGK stars since their planetesimal discs are born with lower masses, explaining why shielded discs are only found around A stars. Finally, we hypothesise that the observed carbon cavities could be due to radiation pressure or accreting planets.
We present sensitive ALMA observations of TWA 3, a nearby, young ($sim$10 Myr) hierarchical system composed of three pre-main sequence M3--M4.5 stars. For the first time, we detected ${}^{12}$CO and ${}^{13}$CO $J$=2-1 emission from the circumbinary protoplanetary disk around TWA 3A. We jointly fit the protoplanetary disk velocity field, stellar astrometric positions, and stellar radial velocities to infer the architecture of the system. The Aa and Ab stars ($0.29pm0.01,M_odot$ and $0.24pm0.01,M_odot$, respectively) comprising the tight ($P=35$ days) eccentric ($e=0.63pm0.01$) spectroscopic binary are coplanar with their circumbinary disk (misalignment $< 6^{circ}$ with 68% confidence), similar to other short-period binary systems. From models of the spectral energy distribution, we found the inner radius of the circumbinary disk ($r_mathrm{inner} = 0.50 - 0.75$ au) to be consistent with theoretical predictions of dynamical truncation $r_mathrm{cav}/a_mathrm{inner} approx 3$. The outer orbit of the tertiary star B ($0.40pm0.28,M_odot$, $asim65 pm 18$ au, $e=0.3pm0.2$) is not as well constrained as the inner orbit, however, orbits coplanar with the A system are still preferred (misalignment $ < 20^{circ}$). To better understand the influence of the B orbit on the TWA 3A circumbinary disk, we performed SPH simulations of the system and found that the outer edge of the gas disk ($r_mathrm{outer}=8.5pm0.2$ au) is most consistent with truncation from a coplanar, circular or moderately eccentric orbit, supporting the preference from the joint orbital fit.
Recent ALMA observations present mounting evidence for the presence of exocometary gas released within Kuiper belt analogues around nearby main sequence stars. This represents a unique opportunity to study their ice reservoir at the younger ages when volatile delivery to planets is most likely to occur. We here present the detection of CO J=2-1 emission co-located with dust emission from the cometary belt in the 440 Myr-old Fomalhaut system. Through spectro-spatial filtering, we achieve a 5.4$sigma$ detection and determine that the rings sky-projected rotation axis matches that of the star. The CO mass derived ($0.65-42 times10^{-7}$ M$_{oplus}$) is the lowest of any circumstellar disk detected to date, and must be of exocometary origin. Using a steady state model, we estimate the CO+CO$_2$ mass fraction of exocomets around Fomalhaut to be between 4.6-76%, consistent with Solar System comets and the two other belts known to host exocometary gas. This is the first indication of a similarity in cometary compositions across planetary systems that may be linked to their formation scenario and is consistent with direct ISM inheritance. In addition, we find tentative evidence that $(49pm 27)$% of the detected flux originates from a region near the eccentric belts pericentre. If confirmed, the latter may be explained through a recent impact event or CO pericentre glow due to exocometary release within a steady state collisional cascade. In the latter scenario, we show how the azimuthal dependence of the CO release rate leads to asymmetries in gas observations of eccentric exocometary belts.
245 - A. Bayo , J. Olofsson , L. Matra 2018
Debris disks can be seen as the left-overs of giant planet formation and the possible nurseries of rocky planets. While M-type stars out-number more massive stars we know very little about the time evolution of their circumstellar disks at ages older than $sim 10$,Myr. Sub-millimeter observations are best to provide first order estimates of the available mass reservoir and thus better constrain the evolution of such disks. Here, we present ALMA Cycle,3 Band,7 observations of the debris disk around the M2 star TWA,7, which had been postulated to harbor two spatially separated dust belts, based on unresolved far-infrared and sub-millimeter data. We show that most of the emission at wavelengths longer than $sim 300$,$mu$m is in fact arising from a contaminant source, most likely a sub-mm galaxy, located at about 6.6 East of TWA,7 (in 2016). Fortunately, the high resolution of our ALMA data allows us to disentangle the contaminant emission from that of the disc and report a significant detection of the disk in the sub-millimeter for the first time with a flux density of 2.1$pm$0.4 mJy at 870 $mu$m. With this detection, we show that the SED can be reproduced with a single dust belt.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا