ﻻ يوجد ملخص باللغة العربية
High-fidelity single-shot readout of spin qubits requires distinguishing states much faster than the T1 time of the spin state. One approach to improving readout fidelity and bandwidth (BW) is cryogenic amplification, where the signal from the qubit is amplified before noise sources are introduced and room-temperature amplifiers can operate at lower gain and higher BW. We compare the performance of two cryogenic amplification circuits: a current-biased heterojunction bipolar transistor circuit (CB-HBT), and an AC-coupled HBT circuit (AC-HBT). Both circuits are mounted on the mixing-chamber stage of a dilution refrigerator and are connected to silicon metal oxide semiconductor (Si-MOS) quantum dot devices on a printed circuit board (PCB). The power dissipated by the CB-HBT ranges from 0.1 to 1 {mu}W whereas the power of the AC-HBT ranges from 1 to 20 {mu}W. Referred to the input, the noise spectral density is low for both circuits, in the 15 to 30 fA/$sqrt{textrm{Hz}}$ range. The charge sensitivity for the CB-HBT and AC-HBT is 330 {mu}e/$sqrt{textrm{Hz}}$ and 400 {mu}e/$sqrt{textrm{Hz}}$, respectively. For the single-shot readout performed, less than 10 {mu}s is required for both circuits to achieve bit error rates below $10^{-3}$, which is a putative threshold for quantum error correction.
We propose and investigate the intrinsically thinnest transistor concept: a monolayer ballistic heterojunction bipolar transistor based on a lateral heterostructure of transition metal dichalcogenides. The device is intrinsically thinner than a Field
We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid he
We report experimental observation of an unexpectedly large thermopower in mesoscopic two-dimensional (2D) electron systems on GaAs/AlGaAs heterostructures at sub-Kelvin temperatures and zero magnetic field. Unlike conventional non-magnetic high-mobi
Unwanted fluctuations over time, in short, noise, are detrimental to device performance, especially for quantum coherent circuits. Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on interf
We investigate the basic charge and heat transport properties of charge neutral epigraphene at sub-kelvin temperatures, demonstrating nearly logarithmic dependence of electrical conductivity over more than two decades in temperature. Using graphenes