ترغب بنشر مسار تعليمي؟ اضغط هنا

Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor

118   0   0.0 ( 0 )
 نشر من قبل Matthew Curry
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10-100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 {mu}W for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.



قيم البحث

اقرأ أيضاً

We propose and investigate the intrinsically thinnest transistor concept: a monolayer ballistic heterojunction bipolar transistor based on a lateral heterostructure of transition metal dichalcogenides. The device is intrinsically thinner than a Field Effect Transistor because it does not need a top or bottom gate, since transport is controlled by the electrochemical potential of the base electrode. As typical of bipolar transistors, the collector current undergoes a tenfold increase for each 60 mV increase of the base voltage over several orders of magnitude at room temperature, without sophisticated optimization of the electrostatics. We present a detailed investigation based on self-consistent simulations of electrostatics and quantum transport for both electron and holes of a pnp device using MoS$_2$ for the 10-nm base and WSe$_2$ for emitter and collector. Our three-terminal device simulations confirm the working principle and a large current modulation I$_text{ON}$/I$_text{OFF}sim 10^8$ for $Delta V_{rm EB}=0.5$ V. Assuming ballistic transport, we are able to achieve a current gain $betasim$ 10$^4$ over several orders of magnitude of collector current and a cutoff frequency up to the THz range. Exploration of the rich world of bipolar nanoscale device concepts in 2D materials is promising for their potential applications in electronics and optoelectronics.
We present a realisation of high bandwidth instrumentation at cryogenic temperatures and for dilution refrigerator operation that possesses advantages over methods using radio-frequency single electron transistor or transimpedance amplifiers. The abi lity for the low temperature electronics to carry out faster measurements than with room temperature electronics is investigated by the use of a phosphorous-doped single-electron transistor. A single-shot technique is successfully implemented and used to observe the real time decay of a quantum state. A discussion on various measurement strategies is presented and the consequences on electron heating and noise are analysed.
We report on the fabrication and electrical characterization at millikelvin temperatures of a novel silicon single-electron transistor (Si-SET). The island and source-drain leads of the Si-SET are formed by the implantation of phosphorus ions to a de nsity above the metal-insulator-transition, with the tunnel junctions created by undoped regions. Surface gates above each of the tunnel junctions independently control the tunnel coupling between the Si-SET island and leads. The device shows periodic Coulomb blockade with a charging energy e$^2$/2C$_Sigma$ $sim$ 250 $mu$eV, and demonstrates a reproducible and controllable pathway to a silicon-based SET using CMOS processing techniques.
We investigate a hybrid structure consisting of $20pm4$ implanted $^{31}$P atoms close to a gate-induced silicon single electron transistor (SiSET). In this configuration, the SiSET is extremely sensitive to the charge state of the nearby centers, tu rning from the off state to the conducting state when the charge configuration is changed. We present a method to measure fast electron tunnel rates between donors and the SiSET island, using a pulsed voltage scheme and low-bandwidth current detection. The experimental findings are quantitatively discussed using a rate equation model, enabling the extraction of the capture and emission rates.
High-fidelity single-shot readout of spin qubits requires distinguishing states much faster than the T1 time of the spin state. One approach to improving readout fidelity and bandwidth (BW) is cryogenic amplification, where the signal from the qubit is amplified before noise sources are introduced and room-temperature amplifiers can operate at lower gain and higher BW. We compare the performance of two cryogenic amplification circuits: a current-biased heterojunction bipolar transistor circuit (CB-HBT), and an AC-coupled HBT circuit (AC-HBT). Both circuits are mounted on the mixing-chamber stage of a dilution refrigerator and are connected to silicon metal oxide semiconductor (Si-MOS) quantum dot devices on a printed circuit board (PCB). The power dissipated by the CB-HBT ranges from 0.1 to 1 {mu}W whereas the power of the AC-HBT ranges from 1 to 20 {mu}W. Referred to the input, the noise spectral density is low for both circuits, in the 15 to 30 fA/$sqrt{textrm{Hz}}$ range. The charge sensitivity for the CB-HBT and AC-HBT is 330 {mu}e/$sqrt{textrm{Hz}}$ and 400 {mu}e/$sqrt{textrm{Hz}}$, respectively. For the single-shot readout performed, less than 10 {mu}s is required for both circuits to achieve bit error rates below $10^{-3}$, which is a putative threshold for quantum error correction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا