ترغب بنشر مسار تعليمي؟ اضغط هنا

On the automorphic sheaves for GSp_4

106   0   0.0 ( 0 )
 نشر من قبل Sergey Lysenko
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Sergey Lysenko




اسأل ChatGPT حول البحث

In this paper we first review the setting for the geometric Langlands functoriality and establish a result for the `backward functoriality functor. We illustrate this by known examples of the geometric theta-lifting. We then apply the above result to obtain new Hecke eigen-sheaves. The most important application is a construction of the automorphic sheaf for G=GSp_4 attached to a G^L-local system on a curve X such that its standard representation is an irreducible local system of rank 4 on X.



قيم البحث

اقرأ أيضاً

This paper begins the project of defining Arthur packets of all unipotent representations for the $p$-adic exceptional group $G_2$. Here we treat the most interesting case by defining and computing Arthur packets with component group $S_3$. We also s how that the distributions attached to these packets are stable, subject to a hypothesis. This is done using a self-contained microlocal analysis of simple equivariant perverse sheaves on the moduli space of homogeneous cubics in two variables. In forthcoming work we will treat the remaining unipotent representations and their endoscopic classification and strengthen our result on stability.
176 - Kari Vilonen , Ting Xue 2018
We establish a Springer correspondence for classical symmetric pairs making use of Fourier transform, a nearby cycle sheaf construction and parabolic induction. In particular, we give an explicit description of character sheaves for classical symmetric pairs.
121 - Jie Xiao , Fan Xu , Minghui Zhao 2017
Let $Q$ be a finite quiver without loops and $mathcal{Q}_{alpha}$ be the Lusztig category for any dimension vector $alpha$. The purpose of this paper is to prove that all Frobenius eigenvalues of the $i$-th cohomology $mathcal{H}^i(mathcal{L})|_x$ fo r a simple perverse sheaf $mathcal{L}in mathcal{Q}_{alpha}$ and $xin mathbb{E}_{alpha}^{F^n}=mathbb{E}_{alpha}(mathbb{F}_{q^n})$ are equal to $(sqrt{q^n})^{i}$ as a conjecture given by Schiffmann (cite{Schiffmann2}). As an application, we prove the existence of a class of Hall polynomials.
154 - Martin H. Weissman 2017
When $W$ is a finite Coxeter group acting by its reflection representation on $E$, we describe the category ${mathsf{Perv}}_W(E_{mathbb C}, {mathcal{H}}_{mathbb C})$ of $W$-equivariant perverse sheaves on $E_{mathbb C}$, smooth with respect to the st ratification by reflection hyperplanes. By using Kapranov and Schechtmans recent analysis of perverse sheaves on hyperplane arrangements, we find an equivalence of categories from ${mathsf{Perv}}_W(E_{mathbb C}, {mathcal{H}}_{mathbb C})$ to a category of finite-dimensional modules over an algebra given by explicit generators and relations. We also define categories of equivariant perverse sheaves on affine buildings, e.g., $G$-equivariant perverse sheaves on the Bruhat--Tits building of a $p$-adic group $G$. In this setting, we find that a construction of Schneider and Stuhler gives equivariant perverse sheaves associated to depth zero representations.
We prove that the local components of an automorphic representation of an adelic semisimple group have equal rank in the sense defined earlier by the second author. Our theorem is an analogue of the results previously obtained by Howe, Li, Dvorsky--S ahi, and Kobayashi--Savin. Unlike previous works which are based on explicit matrix realizations and existence of parabolic subgroups with abelian unipotent radicals, our proof works uniformly for all of the (classical as well as exceptional) groups under consideration. Our result is an extension of the statement known for several semisimple groups that if at least one local component of an automorphic representation is a minimal representation, then all of its local components are minimal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا