ﻻ يوجد ملخص باللغة العربية
In this paper we first review the setting for the geometric Langlands functoriality and establish a result for the `backward functoriality functor. We illustrate this by known examples of the geometric theta-lifting. We then apply the above result to obtain new Hecke eigen-sheaves. The most important application is a construction of the automorphic sheaf for G=GSp_4 attached to a G^L-local system on a curve X such that its standard representation is an irreducible local system of rank 4 on X.
This paper begins the project of defining Arthur packets of all unipotent representations for the $p$-adic exceptional group $G_2$. Here we treat the most interesting case by defining and computing Arthur packets with component group $S_3$. We also s
We establish a Springer correspondence for classical symmetric pairs making use of Fourier transform, a nearby cycle sheaf construction and parabolic induction. In particular, we give an explicit description of character sheaves for classical symmetric pairs.
Let $Q$ be a finite quiver without loops and $mathcal{Q}_{alpha}$ be the Lusztig category for any dimension vector $alpha$. The purpose of this paper is to prove that all Frobenius eigenvalues of the $i$-th cohomology $mathcal{H}^i(mathcal{L})|_x$ fo
When $W$ is a finite Coxeter group acting by its reflection representation on $E$, we describe the category ${mathsf{Perv}}_W(E_{mathbb C}, {mathcal{H}}_{mathbb C})$ of $W$-equivariant perverse sheaves on $E_{mathbb C}$, smooth with respect to the st
We prove that the local components of an automorphic representation of an adelic semisimple group have equal rank in the sense defined earlier by the second author. Our theorem is an analogue of the results previously obtained by Howe, Li, Dvorsky--S