ﻻ يوجد ملخص باللغة العربية
Let $Q$ be a finite quiver without loops and $mathcal{Q}_{alpha}$ be the Lusztig category for any dimension vector $alpha$. The purpose of this paper is to prove that all Frobenius eigenvalues of the $i$-th cohomology $mathcal{H}^i(mathcal{L})|_x$ for a simple perverse sheaf $mathcal{L}in mathcal{Q}_{alpha}$ and $xin mathbb{E}_{alpha}^{F^n}=mathbb{E}_{alpha}(mathbb{F}_{q^n})$ are equal to $(sqrt{q^n})^{i}$ as a conjecture given by Schiffmann (cite{Schiffmann2}). As an application, we prove the existence of a class of Hall polynomials.
When $W$ is a finite Coxeter group acting by its reflection representation on $E$, we describe the category ${mathsf{Perv}}_W(E_{mathbb C}, {mathcal{H}}_{mathbb C})$ of $W$-equivariant perverse sheaves on $E_{mathbb C}$, smooth with respect to the st
This paper begins the project of defining Arthur packets of all unipotent representations for the $p$-adic exceptional group $G_2$. Here we treat the most interesting case by defining and computing Arthur packets with component group $S_3$. We also s
The convolution ring $K^{GL_n(mathcal{O})rtimesmathbb{C}^times}(mathrm{Gr}_{GL_n})$ was identified with a quantum unipotent cell of the loop group $LSL_2$ in [Cautis-Williams, J. Amer. Math. Soc. 32 (2019), pp. 709-778]. We identify the basis formed
In this article we propose a geometric description of Arthur packets for $p$-adic groups using vanishing cycles of perverse sheaves. Our approach is inspired by the 1992 book by Adams, Barbasch and Vogan on the Langlands classification of admissible
We establish a Springer correspondence for classical symmetric pairs making use of Fourier transform, a nearby cycle sheaf construction and parabolic induction. In particular, we give an explicit description of character sheaves for classical symmetric pairs.