ﻻ يوجد ملخص باللغة العربية
We show that Ce- and Yb-based Kondo-lattice ferromagnets order mainly along the magnetically hard direction of the ground state Kramers doublet determined by crystalline electric field (CEF). Here we argue that this peculiar phenomenon, that was believed to be rare, is instead the standard case. Moreover, it seems to be independent on the Curie temperature $T_mathrm{C}$, crystalline structure, size of the ordered moment and type of ground state wave function. On the other hand, all these systems show the Kondo coherence maximum in the temperature dependence of the resistivity just above $T_mathrm{C}$ which indicates a Kondo temperature of a few Kelvin. An important role of fluctuations is indicated by the non-mean-field like transition in specific heat measurements as well as by the suppression of this effect by a strong Ising-like anisotropy. We discuss possible theoretical scenarios.
A significant number of Kondo-lattice ferromagnets order perpendicular to the easy magnetization axis dictated by the crystalline electric field. The nature of this phenomenon has attracted considerable attention, but remains poorly understood. In th
Heavy electronic states originating from the f atomic orbitals underlie a rich variety of quantum phases of matter. We use atomic scale imaging and spectroscopy with the scanning tunneling microscope (STM) to examine the novel electronic states that
Motivated by the experiments on the organic compound $(Per)_{2}[Pt(mnt)_{2}]$, we study the ground state of the one-dimensional Kondo lattice model at quarter filling with the density matrix renormalization group method. We show a coupled dimer and b
We present a phenomenological solution of the Kondo lattice that is derived from an analysis of the bulk specific heat and spin susceptibility of the heavy electron superconductor CeCoIn5. We find that below a crossover temperature corresponding to t
In the first step, experiments on a single cerium or ytterbium Kondo impurity reveal the importance of the Kondo temperature by comparison to other type of couplings like the hyperfine interaction, the crystal field and the intersite coupling. The ex