ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the Kondo Lattice

195   0   0.0 ( 0 )
 نشر من قبل Satoru Nakatsuji
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a phenomenological solution of the Kondo lattice that is derived from an analysis of the bulk specific heat and spin susceptibility of the heavy electron superconductor CeCoIn5. We find that below a crossover temperature corresponding to the intersite coupling scale, T* ~ 45 K, the Kondo gas (of non-interacting Kondo impurities) partially condenses into a heavy electron Kondo liquid that has a temperature independent Wilson ratio = 2.0. The relative fraction, f, of the condensed Kondo liquid component plays the role of an order parameter; it increases linearly with decreasing temperature until it saturates at its low temperature value of 0.9. The resistivity is shown to be simply the product of (1-f) and that of an isolated Kondo impurity. The generality of this result is suggested by the corresponding analysis for Ce1-xLaxCoIn5 and CeIrIn5.


قيم البحث

اقرأ أيضاً

In the first step, experiments on a single cerium or ytterbium Kondo impurity reveal the importance of the Kondo temperature by comparison to other type of couplings like the hyperfine interaction, the crystal field and the intersite coupling. The ex tension to a lattice is discussed. Emphasis is given on the fact that the occupation number $n_f$ of the trivalent configuration may be the implicit key variable even for the Kondo lattice. Three $(P, H, T)$ phase diagrams are discussed: CeRu$_2$Si$_2$, CeRhIn$_5$ and SmS.
118 - Eoin Quinn , Onur Erten 2019
The Kondo lattice model is a paradigmatic model for the description of local moment systems, a class of materials exhibiting a range of strongly correlated phenomena including heavy fermion formation, magnetism, quantum criticality and unconventional superconductivity. Conventional theoretical approaches invoke fractionalization of the local moment spin through large-N and slave particle methods. In this work we develop a new formalism, based instead on non-canonical degrees of freedom. We demonstrate that the graded Lie algebra su(2|2) provides a powerful means of organizing correlations on the Kondo lattice through a splitting of the electronic degree of freedom, in a manner which entwines the conduction electrons with the local moment spins. This offers a novel perspective on heavy fermion formation. Unlike slave-particle methods, non-canonical degrees of freedom generically allow for a violation of the Luttinger sum rule, and we interpret recent angle resolved photoemission experiments on Ce-115 systems in view of this.
We report on the electrical resistivity, magnetic susceptibility and heat-capacity measurements on a new intermetallic compound CePd5Al2, crystallizing in the ZrNi2Al5-type tetragonal structure, with lattice parameters a = 4.156 A and c = 14.883 A. T he compound presents Kondo lattice behavior and an easy-plane antiferromagnetic ground state with two magnetic transitions at 2.9 K and 3.9 K. The Sommerfeld coefficient is estimated as 60 mJ/mol K^2.
We consider Dirac electrons on the honeycomb lattice Kondo coupled to spin-1/2 degrees of freedom on the kagome lattice. The interactions between the spins are chosen along the lines of the Balents-Fisher-Girvin model that is known to host a $mathbb{ Z}_2$ spin liquid and a ferromagnetic phase. The model is amenable to sign free auxiliary field quantum Monte Carlo simulations. While in the ferromagnetic phase the Dirac electrons acquire a gap, they remain massless in the $mathbb{Z}_2$ spin liquid phase due to the breakdown of Kondo screening. Since our model has an odd number of spins per unit cell, this phase is a non-Fermi liquid that violates the conventional Luttinger theorem which relates the Fermi surface volume to the particle density in a Fermi liquid. This non-Fermi liquid is a specific realization of the so called fractionalized Fermi liquid proposed in the context of heavy fermions. We probe the Kondo breakdown in this non-Fermi liquid phase via conventional observables such as the spectral function, and also by studying the mutual information between the electrons and the spins.
The magnetic correlations, local moments and the susceptibility in the correlated 2D Kondo lattice model at half filling are investigated. We calculate their systematic dependence on the control parameters J_K/t and U/t. An unbiased and reliable exac t diagonalization (ED) approach for ground state properties as well as the finite temperature Lanczos method (FTLM) for specific heat and the uniform susceptibility are employed for small tiles on the square lattice. They lead to two major results: Firstly we show that the screened local moment exhibits non-monotonic behavior as a function of U for weak Kondo coupling J_K. Secondly the temperature dependence of the susceptibility obtained from FTLM allows to extract the dependence of the characteristic Kondo temperature scale T* on the correlation strength U. A monotonic increase of T* for small U is found resolving the ambiguity from earlier investigations. In the large U limit the model is equivalent to the 2D Kondo necklace model with two types of localized spins. In this limit the numerical results can be compared to those of the analytical bond operator method in mean field treatment and excellent agreement for the total paramagnetic moment is found, supporting the reliability of both methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا