ترغب بنشر مسار تعليمي؟ اضغط هنا

An Optical Frontend for a Convolutional Neural Network

159   0   0.0 ( 0 )
 نشر من قبل Arka Majumdar
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The parallelism of optics and the miniaturization of optical components using nanophotonic structures, such as metasurfaces present a compelling alternative to electronic implementations of convolutional neural networks. The lack of a low-power optical nonlinearity, however, requires slow and energy-inefficient

قيم البحث

اقرأ أيضاً

In convolutional neural network (CNN), dropout cannot work well because dropped information is not entirely obscured in convolutional layers where features are correlated spatially. Except randomly discarding regions or channels, many approaches try to overcome this defect by dropping influential units. In this paper, we propose a non-random dropout method named FocusedDropout, aiming to make the network focus more on the target. In FocusedDropout, we use a simple but effective way to search for the target-related features, retain these features and discard others, which is contrary to the existing methods. We found that this novel method can improve network performance by making the network more target-focused. Besides, increasing the weight decay while using FocusedDropout can avoid the overfitting and increase accuracy. Experimental results show that even a slight cost, 10% of batches employing FocusedDropout, can produce a nice performance boost over the baselines on multiple datasets of classification, including CIFAR10, CIFAR100, Tiny Imagenet, and has a good versatility for different CNN models.
We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two new operations, pointwise gro up convolution and channel shuffle, to greatly reduce computation cost while maintaining accuracy. Experiments on ImageNet classification and MS COCO object detection demonstrate the superior performance of ShuffleNet over other structures, e.g. lower top-1 error (absolute 7.8%) than recent MobileNet on ImageNet classification task, under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet achieves ~13x actual speedup over AlexNet while maintaining comparable accuracy.
In this work, we present a novel background subtraction system that uses a deep Convolutional Neural Network (CNN) to perform the segmentation. With this approach, feature engineering and parameter tuning become unnecessary since the network paramete rs can be learned from data by training a single CNN that can handle various video scenes. Additionally, we propose a new approach to estimate background model from video. For the training of the CNN, we employed randomly 5 percent video frames and their ground truth segmentations taken from the Change Detection challenge 2014(CDnet 2014). We also utilized spatial-median filtering as the post-processing of the network outputs. Our method is evaluated with different data-sets, and the network outperforms the existing algorithms with respect to the average ranking over different evaluation metrics. Furthermore, due to the network architecture, our CNN is capable of real time processing.
130 - Haitong Tang , Shuang He , Xia Lu 2021
It is a challenging task to accurately perform semantic segmentation due to the complexity of real picture scenes. Many semantic segmentation methods based on traditional deep learning insufficiently captured the semantic and appearance information o f images, which put limit on their generality and robustness for various application scenes. In this paper, we proposed a novel strategy that reformulated the popularly-used convolution operation to multi-layer convolutional sparse coding block to ease the aforementioned deficiency. This strategy can be possibly used to significantly improve the segmentation performance of any semantic segmentation model that involves convolutional operations. To prove the effectiveness of our idea, we chose the widely-used U-Net model for the demonstration purpose, and we designed CSC-Unet model series based on U-Net. Through extensive analysis and experiments, we provided credible evidence showing that the multi-layer convolutional sparse coding block enables semantic segmentation model to converge faster, can extract finer semantic and appearance information of images, and improve the ability to recover spatial detail information. The best CSC-Unet model significantly outperforms the results of the original U-Net on three public datasets with different scenarios, i.e., 87.14% vs. 84.71% on DeepCrack dataset, 68.91% vs. 67.09% on Nuclei dataset, and 53.68% vs. 48.82% on CamVid dataset, respectively.
In this paper, we propose a new data augmentation strategy named Thumbnail, which aims to strengthen the networks capture of global features. We get a generated image by reducing an image to a certain size, which is called as the thumbnail, and pasti ng it in the random position of the original image. The generated image not only retains most of the original image information but also has the global information in the thumbnail. Furthermore, we find that the idea of thumbnail can be perfectly integrated with Mixed Sample Data Augmentation, so we paste the thumbnail in another image where the ground truth labels are also mixed with a certain weight, which makes great achievements on various computer vision tasks. Extensive experiments show that Thumbnail works better than the state-of-the-art augmentation strategies across classification, fine-grained image classification, and object detection. On ImageNet classification, ResNet50 architecture with our method achieves 79.21% accuracy, which is more than 2.89% improvement on the baseline.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا