ﻻ يوجد ملخص باللغة العربية
Although interdisciplinarity is often touted as a necessity for modern research, the evidence on the relative impact of sectorial versus to interdisciplinary science is qualitative at best. In this paper we leverage the bibliographic data set of the American Physical Society to quantify the role of interdisciplinarity in physics, and that of talent and luck in achieving success in scientific careers. We analyze a period of 30 years (1980-2009) tagging papers and their authors by means of the Physics and Astronomy Classification Scheme (PACS), to show that some degree of interdisciplinarity is quite helpful to reach success, measured as a proxy of either the number of articles or the citations score. We also propose an agent-based model of the publication-reputation-citation dynamics reproduces the trends observed in the APS data set. On the one hand, the results highlight the crucial role of randomness and serendipity in real scientific research; on the other, they shed light on a counter-intuitive effect indicating that the most talented authors are not necessarily the most successful ones.
While wealth distribution in the world is highly skewed and heavy-tailed, human talent - as the majority of individual features - is normally distributed. In a recent computational study by Pluchino et al [Talent vs luck: The role of randomness in su
A comparative study is done of interdisciplinary citations in 2013 between physics, chemistry, and molecular biology, in Brazil, South Korea, Turkey, and USA. Several surprising conclusions emerge from our tabular and graphical analysis: The cross-sc
Using a large database (~ 215 000 records) of relevant articles, we empirically study the complex systems field and its claims to find universal principles applying to systems in general. The study of references shared by the papers allows us to obta
In this study, we combine bibliometric techniques with a machine learning algorithm, the sequential Information Bottleneck, to assess the interdisciplinarity of research produced by the University of Hawaii NASA Astrobiology Institute (UHNAI). In par
The broad coverage of the search for the Higgs boson in the mainstream media is a relative novelty for high energy physics (HEP) research, whose achievements have traditionally been limited to scholarly literature. This paper illustrates the results