ترغب بنشر مسار تعليمي؟ اضغط هنا

A Comparative Study of Interdisciplinarity in Sciences in Brazil, South Korea, Turkey, and USA

258   0   0.0 ( 0 )
 نشر من قبل A. Nihat Berker
 تاريخ النشر 2015
والبحث باللغة English




اسأل ChatGPT حول البحث

A comparative study is done of interdisciplinary citations in 2013 between physics, chemistry, and molecular biology, in Brazil, South Korea, Turkey, and USA. Several surprising conclusions emerge from our tabular and graphical analysis: The cross-science citation rates are in general strikingly similar, between Brazil, South Korea, Turkey, and USA. One apparent exception is the comparatively more tenuous relation between molecular biology and physics in Brazil and USA. Other slight exceptions are the higher amount of citing of physicists by chemists in South Korea, of chemists by molecular biologists in Turkey, and of molecular biologists by chemists in Brazil and USA. Chemists are, by a sizable margin, the most cross-science citing scientists in this group of three sciences. Physicist are, again by a sizable margin, the least cross-science citing scientists in this group of three sciences. In all four countries, the strongest cross-science citation is from chemistry to physics and the weakest cross-science citation is from physics to molecular biology. Our findings are consistent with a V-shaped backbone connectivity, as opposed to a Delta connectivity, as also found in a previous study of earlier citation years.



قيم البحث

اقرأ أيضاً

In this study, we combine bibliometric techniques with a machine learning algorithm, the sequential Information Bottleneck, to assess the interdisciplinarity of research produced by the University of Hawaii NASA Astrobiology Institute (UHNAI). In par ticular, we cluster abstract data to evaluate Thomson Reuters Web of Knowledge subject categories as descriptive labels for astrobiology documents, assess individual researcher interdisciplinarity, and determine where collaboration opportunities might occur. We find that the majority of the UHNAI team is engaged in interdisciplinary research, and suggest that our method could be applied to additional NASA Astrobiology Institute teams in particular, or other interdisciplinary research teams more broadly, to identify and facilitate collaboration opportunities.
Although interdisciplinarity is often touted as a necessity for modern research, the evidence on the relative impact of sectorial versus to interdisciplinary science is qualitative at best. In this paper we leverage the bibliographic data set of the American Physical Society to quantify the role of interdisciplinarity in physics, and that of talent and luck in achieving success in scientific careers. We analyze a period of 30 years (1980-2009) tagging papers and their authors by means of the Physics and Astronomy Classification Scheme (PACS), to show that some degree of interdisciplinarity is quite helpful to reach success, measured as a proxy of either the number of articles or the citations score. We also propose an agent-based model of the publication-reputation-citation dynamics reproduces the trends observed in the APS data set. On the one hand, the results highlight the crucial role of randomness and serendipity in real scientific research; on the other, they shed light on a counter-intuitive effect indicating that the most talented authors are not necessarily the most successful ones.
188 - Sebastian Grauwin 2012
Using a large database (~ 215 000 records) of relevant articles, we empirically study the complex systems field and its claims to find universal principles applying to systems in general. The study of references shared by the papers allows us to obta in a global point of view on the structure of this highly interdisciplinary field. We show that its overall coherence does not arise from a universal theory but instead from computational techniques and fruitful adaptations of the idea of self-organization to specific systems. We also find that communication between different disciplines goes through specific trading zones, ie sub-communities that create an interface around specific tools (a DNA microchip) or concepts (a network).
In the book The Essential Tension Thomas Kuhn described the conflict between tradition and innovation in scientific research --i.e., the desire to explore new promising areas, counterposed to the need to capitalize on the work done in the past. While it is true that along their careers many scientists probably felt this tension, only few works have tried to quantify it. Here, we address this question by analyzing a large-scale dataset, containing all the papers published by the American Physical Society (APS) in more than $25$ years, which allows for a better understanding of scientists careers evolution in Physics. We employ the Physics and Astronomy Classification Scheme (PACS) present in each paper to map the scientific interests of $181,397$ authors and their evolution along the years. Our results indeed confirm the existence of the `essential tension with scientists balancing between exploring the boundaries of their area and exploiting previous work. In particular, we found that although the majority of physicists change the topics of their research, they stay within the same broader area thus exploring with caution new scientific endeavors. Furthermore, we quantify the flows of authors moving between different subfields and pinpoint which areas are more likely to attract or donate researchers to the other ones. Overall, our results depict a very distinctive portrait of the evolution of research interests in Physics and can help in designing specific policies for the future.
171 - Yong Zhao , Jian Du , Yishan Wu 2020
John Desmond Bernal (1901-1970) was one of the most eminent scientists in molecular biology, and also regarded as the founding father of the Science of Science. His book The Social Function of Science laid the theoretical foundations for the discipli ne. In this article, we summarize four chief characteristics of his ideas in the Science of Science: the socio-historical perspective, theoretical models, qualitative and quantitative approaches, and studies of science planning and policy. China has constantly reformed its scientific and technological system based on research evidence of the Science of Science. Therefore, we analyze the impact of Bernal Science-of-Science thoughts on the development of Science of Science in China, and discuss how they might be usefully taken still further in quantitative studies of science.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا