ترغب بنشر مسار تعليمي؟ اضغط هنا

New classes of chiral topological nodes with non-contractible surface Fermi arcs in CoSi

92   0   0.0 ( 0 )
 نشر من قبل Tian Qian
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In condensed matter systems, chiral topological nodes are robust band crossing points in momentum space that carry nonzero Chern numbers. The chirality is manifested by the presence of surface Fermi arcs connecting the projections of nodes with opposite Chern numbers. In addition to the well-known Weyl nodes, theorists have proposed several other types of chiral topological nodes in condensed matter systems, but the direct experimental evidence of their existence is still lacking. Here, using angle-resolved photoemission spectroscopy, we reveal two types of new chiral nodes, namely the spin-1 nodes and charge-2 Dirac nodes, at the band crossing points near the Fermi level in CoSi, the projections of which on the (001) surface are connected by topologically protected surface Fermi arcs. As these chiral nodes in CoSi are enforced at the Brillouin zone (BZ) center and corner by the crystalline symmetries, the surface Fermi arcs connecting their projections form a non-contractible path traversing the entire (001) surface BZ, in sharp contrast to pairs of Weyl nodes with small separation. Our work marks the first experimental observation of chiral topological nodes beyond the Weyl nodes both in the bulk and on the surface in condensed matter systems.

قيم البحث

اقرأ أيضاً

102 - N. Xu , H. M. Weng , B. Q. Lv 2015
A Weyl semimetal possesses spin-polarized band-crossings, called Weyl nodes, connected by topological surface arcs. The low-energy excitations near the crossing points behave the same as massless Weyl fermions, leading to exotic properties like chira l anomaly. To have the transport properties dominated by Weyl fermions, Weyl nodes need to locate nearly at the chemical potential and enclosed by pairs of individual Fermi surfaces with nonzero Fermi Chern numbers. Combining angle-resolved photoemission spectroscopy and first-principles calculation, here we show that TaP is a Weyl semimetal with only single type of Weyl fermions, topologically distinguished from TaAs where two types of Weyl fermions contribute to the low-energy physical properties. The simple Weyl fermions in TaP are not only of fundamental interests but also of great potential for future applications. Fermi arcs on the Ta-terminated surface are observed, which appear in a different pattern from that on the As-termination in TaAs and NbAs.
181 - J.-Z. Ma , J.-B. He , Y.-F. Xu 2017
Topological Dirac and Weyl semimetals not only host quasiparticles analogous to the elementary fermionic particles in high-energy physics, but also have nontrivial band topology manifested by exotic Fermi arcs on the surface. Recent advances suggest new types of topological semimetals, in which spatial symmetries protect gapless electronic excitations without high-energy analogy. Here we observe triply-degenerate nodal points (TPs) near the Fermi level of WC, in which the low-energy quasiparticles are described as three-component fermions distinct from Dirac and Weyl fermions. We further observe the surface states whose constant energy contours are pairs of Fermi arcs connecting the surface projection of the TPs, proving the nontrivial topology of the newly identified semimetal state.
Chiral fermions in solid state feature Fermi arc states, connecting the surface projections of the bulk chiral nodes. The surface Fermi arc is a signature of nontrivial bulk topology. Unconventional chiral fermions with an extensive Fermi arc travers ing the whole Brillouin zone have been theoretically proposed in CoSi. Here, we use scanning tunneling microscopy / spectroscopy to investigate quasiparticle interference at various terminations of a CoSi single crystal. The observed surface states exhibit chiral fermion-originated characteristics. These reside on (001) and (011) but not (111) surfaces with pi-rotation symmetry, spiral with energy, and disperse in a wide energy range from ~-200 to ~+400 mV. Owing to the high-energy and high-space resolution, a spin-orbit coupling-induced splitting of up to ~80 mV is identified. Our observations are corroborated by density functional theory and provide strong evidence that CoSi hosts the unconventional chiral fermions and the extensive Fermi arc states.
We report the optical conductivity in high-quality crystals of the chiral topological semimetal CoSi, which hosts exotic quasiparticles known as multifold fermions. We find that the optical response is separated into several distinct regions as a fun ction of frequency, each dominated by different types of quasiparticles. The low-frequency intraband response is captured by a narrow Drude peak from a high-mobility electron pocket of double Weyl quasi-particles, and the temperature dependence of the spectral weight is consistent with its Fermi velocity. By subtracting the low-frequency sharp Drude and phonon peaks at low temperatures, we reveal two intermediate quasi-linear inter-band contributions separated by a kink at 0.2 eV. Using Wannier tight-binding models based on first-principle calculations, we link the optical conductivity above and below 0.2 eV to interband transitions near the double Weyl fermion and a threefold fermion, respectively. We analyze and determine the chemical potential relative to the energy of the threefold fermion, revealing the importance of transitions between a linearly dispersing band and a flat band. More strikingly, below 0.1 eV our data are best explained if spin-orbit coupling is included, suggesting that at these energies the optical response is governed by transitions between a previously unobserved four-fold spin-3/2 node and a Weyl node. Our comprehensive combined experimental and theoretical study provides a way to resolve different types of multifold fermions in CoSi at different energy. More broadly our results provide the necessary basis to interpret the burgeoning set of optical and transport experiments in chiral topological semimetals.
The nonlinear optical responses from topological semimetals are crucial in both understanding the fundamental properties of quantum materials and designing next-generation light-sensors or solar-cells. However, previous work was focusing on the optic al effects from bulk states only, disregarding topological surface responses. Here we propose a new (hitherto unknown) surface-only topological photocurrent response from chiral Fermi arcs. Using the ideal topological chiral semimetal RhSi as a representative, we quantitatively compute the topologically robust photocurrents from Fermi arcs on different surfaces. By rigorous crystal symmetry analysis, we demonstrate that Fermi arc photocurrents can be perpendicular to the bulk injection currents regardless of the choice of materials surface. We then generalize this finding to all cubic chiral space groups and predict material candidates. Our theory reveals a powerful notion where common crystalline-symmetry can be used to induce universal topological responses as well as making it possible to completely disentangle bulk and surface topological responses in many conducting material families.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا