ﻻ يوجد ملخص باللغة العربية
Gravitational waves searches for compact binary mergers with LIGO and Virgo are presently a two stage process. First, a gravitational wave signal is identified. Then, an exhaustive search over possible signal parameters is performed. It is critical that the identification stage is efficient in order to maximize the number of gravitational wave sources that are identified. Initial identification of gravitational wave signals with LIGO and Virgo happens in real-time which requires that less than one second of computational time must be used for each one second of gravitational wave data collected. In contrast, subsequent parameter estimation may require hundreds of hours of computational time to analyze the same one second of gravitational wave data. The real-time identification requirement necessitates efficient and often approximate methods for signal analysis. We describe one piece of real-time gravitational-wave identification: an efficient method for ascertaining a signals consistency between multiple gravitational wave detectors suitable for real-time gravitational wave searches for compact binary mergers. This technique was used in analyses of Advanced LIGOs second observing run and Advanced Virgos first observing run.
The field of transient astronomy has seen a revolution with the first gravitational-wave detections and the arrival of multi-messenger observations they enabled. Transformed by the first detection of binary black hole and binary neutron star mergers,
We present a new veto procedure to distinguish between continuous gravitational wave (CW) signals and the detector artifacts that can mimic their behavior. The veto procedure exploits the fact that a long-lasting coherent disturbance is less likely t
In hierarchical searches for continuous gravitational waves, clustering of candidates is an important postprocessing step because it reduces the number of noise candidates that are followed-up at successive stages [1][7][12]. Previous clustering proc
We study a cross-shaped cavity filled with superfluid $^4$He as a prototype resonant-mass gravitational wave detector. Using a membrane and a re-entrant microwave cavity as a sensitive optomechanical transducer, we were able to observe the thermally
KAGRA is a new gravitational wave detector which aims to begin joint observation with Advanced LIGO and Advanced Virgo from late 2019. Here, we present KAGRAs possible upgrade plans to improve the sensitivity in the decade ahead. Unlike other state-o