ﻻ يوجد ملخص باللغة العربية
We study computable embeddings for pairs of structures, i.e. for classes containing precisely two non-isomorphic structures. Surprisingly, even for some pairs of simple linear orders, computable embeddings induce a non-trivial degree structure. Our main result shows that ${omega cdot k,omega^star cdot k}$ is computably embeddable in ${omega cdot t, omega^star cdot t}$ iff $k$ divides $t$.
We continue the study of computable embeddings for pairs of structures, i.e. for classes containing precisely two non-isomorphic structures. Surprisingly, even for some pairs of simple linear orders, computable embeddings induce a non-trivial degree
Cohesive powers of computable structures can be viewed as effective ultraproducts over effectively indecomposable sets called cohesive sets. We investigate the isomorphism types of cohesive powers $Pi _{C}% mathcal{L}$ for familiar computable linear
Cohesive powers of computable structures are effective analogs of ultrapowers, where cohesive sets play the role of ultrafilters. Let $omega$, $zeta$, and $eta$ denote the respective order-types of the natural numbers, the integers, and the rationals
We investigate the statement the order topology of every countable complete linear order is compact in the framework of reverse mathematics, and we find that the statements strength depends on the precise formulation of compactness. If we require tha
We introduce the notion of tau-like partial order, where tau is one of the linear order types omega, omega*, omega+omega*, and zeta. For example, being omega-like means that every element has finitely many predecessors, while being zeta-like means th