ﻻ يوجد ملخص باللغة العربية
We introduce the notion of tau-like partial order, where tau is one of the linear order types omega, omega*, omega+omega*, and zeta. For example, being omega-like means that every element has finitely many predecessors, while being zeta-like means that every interval is finite. We consider statements of the form any tau-like partial order has a tau-like linear extension and any tau-like partial order is embeddable into tau (when tau is zeta this result appears to be new). Working in the framework of reverse mathematics, we show that these statements are equivalent either to BSigma^0_2 or to ACA_0 over the usual base system RCA_0.
A quasi-order $Q$ induces two natural quasi-orders on $P(Q)$, but if $Q$ is a well-quasi-order, then these quasi-orders need not necessarily be well-quasi-orders. Nevertheless, Goubault-Larrecq showed that moving from a well-quasi-order $Q$ to the qu
Using the tools of reverse mathematics in second-order arithmetic, as developed by Friedman, Simpson, and others, we determine the axioms necessary to develop various topics in commutative ring theory. Our main contributions to the field are as follo
In this paper we study the reverse mathematics of two theorems by Bonnet about partial orders. These results concern the structure and cardinality of the collection of the initial intervals. The first theorem states that a partial order has no infini
We investigate the strength of a randomness notion $mathcal R$ as a set-existence principle in second-order arithmetic: for each $Z$ there is an $X$ that is $mathcal R$-random relative to $Z$. We show that the equivalence between $2$-randomness and b
The Jordan decomposition theorem states that every function $f colon [0,1] to mathbb{R}$ of bounded variation can be written as the difference of two non-decreasing functions. Combining this fact with a result of Lebesgue, every function of bounded v