ﻻ يوجد ملخص باللغة العربية
Electron spins in solids constitute remarkable quantum sensors. Individual defect centers in diamond were used to detect individual nuclear spins with nanometer scale resolution, and ensemble magnetometers rival SQUID and vapor cell magnetometers when taking into account room temperature operation and size. NV center spins can also detect electric field vectors, despite their weak coupling to electric fields. %even that of an isolated fundamental charge, despite their weak coupling to electric fields. Here, we employ ensembles of NV center spins to measure macroscopic AC electric vector fields with high precision. We utilize low strain, $^{12}$C enriched diamond to achieve maximum sensitivity and tailor the spin Hamiltonian via proper magnetic field adjustment to map out the AC electric field strength and polarization and arrive at refined electric field coupling constants. For high precision measurements we combine classical lock-in detection with aspects from quantum phase estimation for effective suppression of technical noise. Eventually, this enables $t^{-1/2}$ uncertainty scaling of the electric field strength over extended averaging periods, enabling us to reach a sensitivity down to $10^{-7}$ V/$mu$m.
For precision coherent measurements with ensembles of quantum spins the relevant Figure-of-Merit (FOM) is the product of polarized spin density and coherence lifetime, which is generally limited by the dynamics of the spin environment. Here, we apply
The ability to perform nanoscale electric field imaging of elementary charges at ambient temperatures will have diverse interdisciplinary applications. While the nitrogen-vacancy (NV) center in diamond is capable of high-sensitivity electrometry, dem
Nitrogen-vacancy (NV) centers in diamond have shown promise as inherently localized electric-field sensors, capable of detecting individual charges with nanometer resolution. Working with NV ensembles, we demonstrate that a detailed understanding of
We demonstrate a method of imaging spatially varying magnetic fields using a thin layer of nitrogen-vacancy (NV) centers at the surface of a diamond chip. Fluorescence emitted by the two-dimensional NV ensemble is detected by a CCD array, from which
We use multi-pulse dynamical decoupling to increase the coherence lifetime (T2) of large numbers of nitrogen-vacancy (NV) electronic spins in room temperature diamond, thus enabling scalable applications of multi-spin quantum information processing a