ﻻ يوجد ملخص باللغة العربية
We use multi-pulse dynamical decoupling to increase the coherence lifetime (T2) of large numbers of nitrogen-vacancy (NV) electronic spins in room temperature diamond, thus enabling scalable applications of multi-spin quantum information processing and metrology. We realize an order-of-magnitude extension of the NV multi-spin T2 for diamond samples with widely differing spin environments. For samples with nitrogen impurity concentration <~1 ppm, we find T2 > 2 ms, comparable to the longest coherence time reported for single NV centers, and demonstrate a ten-fold enhancement in NV multi-spin sensing of AC magnetic fields.
For precision coherent measurements with ensembles of quantum spins the relevant Figure-of-Merit (FOM) is the product of polarized spin density and coherence lifetime, which is generally limited by the dynamics of the spin environment. Here, we apply
We demonstrate that CPMG and XYXY decoupling sequences with non-ideal $pi$ pulses can reduce dipolar interactions between spins of the same species in solids. Our simulations of pulsed electron spin resonance (ESR) experiments show that $pi$ rotation
Longitudinal relaxation is the process by which an excited spin ensemble decays into its thermal equilibrium with the environment. In solid-state spin systems relaxation into the phonon bath usually dominates over the coupling to the electromagnetic
Coherence time is an essential parameter for quantum sensing, quantum information, and quantum computation. In this work, we demonstrate electron spin coherence times as long as 0.1 s for an ensemble of rubidium atoms trapped in a solid parahydrogen
We present measurements of the Berry Phase in a single solid-state spin qubit associated with the nitrogen-vacancy center in diamond. Our results demonstrate the remarkable degree of coherent control achievable in the presence of a highly complex sol