ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface flow profiles for dry and wet granular materials by Particle Tracking Velocimetry; the effect of wall roughness

63   0   0.0 ( 0 )
 نشر من قبل Sudeshna Roy Ms.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two-dimensional Particle Tracking Velocimetry (PTV) is a promising technique to study the behaviour of granular flows. The aim is to experimentally determine the free surface width and position of the shear band from the velocity profile to validate simulations in a split-bottom shear cell geometry. The position and velocities of scattered tracer particles are tracked as they move with the bulk flow by analyzing images. We then use a new technique to extract the continuum velocity field, applying coarse-graining with the postprocessing toolbox MercuryCG on the discrete experimental PTV data. For intermediate filling heights, the dependence of the shear (or angular) velocity on the radial coordinate at the free surface is well fitted by an error function. From the error function, we get the width and the centre position of the shear band. We investigate the dependence of these shear band properties on filling height and rotation frequencies of the shear cell for dry glass beads for rough and smooth wall surfaces. For rough surfaces, the data agrees with the existing experimental results and theoretical scaling predictions. For smooth surfaces, particle-wall slippage is significant and the data deviates from the predictions. We further study the effect of cohesion on the shear band properties by using small amount of silicon oil and glycerol as interstitial liquids with the glass beads. While silicon oil does not lead to big changes, glycerol changes the shear band properties considerably. The shear band gets wider and is situated further inward with increasing liquid saturation, due to the correspondingly increasing trend of particles to stick together.



قيم البحث

اقرأ أيضاً

445 - Qing Xu , Ashish V. Orpe , 2007
We investigate the dynamics of a partially saturated grain-liquid mixture with a rotating drum apparatus. The drum is partially filled with the mixture and then rotated about its horizontal axis. We focus on the continous avalanching regime and measu re the impact of volume fraction and viscosity of the liquid on the dynamic surface angle. The inclination angle of the surface is observed to increase sharply to a peak and then decrease as a function of liquid volume fraction. The height of the peak is observed to increase with rotation rate. For higher liquid volume fractions, the inclination angle of the surface can decrease with viscosity before increasing. The viscosity where the minima occurs decreases with the rotation rate of the drum. Limited measurements of the flow depth were made, and these were observed to show only fractional changes with volume fraction and rotation speeds. We show that the qualitative features of our observations can be understood by analyzing the effect of lubrication forces on the timescale over which particles come in contact.
The motion of soft-glassy materials (SGM) in a confined geometry is strongly impacted by surface roughness. However, the effect of the spatial distribution of the roughness remains poorly understood from a more quantitative viewpoint. Here we present a comprehensive study of concentrated emulsions flowing in microfluidic channels, one wall of which is patterned with micron-size equally spaced grooves oriented perpendicularly to the flow direction. We show that roughness-induced fluidization can be quantitatively tailored by systematically changing both the width and separation of the grooves. We find that a simple scaling law describes such fluidization as a function of the density of grooves, suggesting common scenarios for droplet trapping and release. Numerical simulations confirm these views and are used to elucidate the relation between fluidization and the rate of plastic rearrangements.
73 - P. Tegzes 2002
We have studied the dynamics of avalanching wet granular media in a rotating drum apparatus. Quantitative measurements of the flow velocity and the granular flux during avalanches allow us to characterize novel avalanche types unique to wet media. We also explore the details of viscoplastic flow (observed at the highest liquid contents) in which there are lasting contacts during flow, leading to coherence across the entire sample. This coherence leads to a velocity independent flow depth at high rotation rates and novel robust pattern formation in the granular surface.
We study the rheology of dry and wet granular materials in the steady quasistatic regime using the Discrete Element Method (DEM) in a split-bottom ring shear cell with focus on the macroscopic friction. The aim of our study is to understand the local rheology of bulk flow at various positions in the shear band, where the system is in critical state. The general(ized) rheology has four dimensionless control parameters that relate the time scales of five significant phenomena, namely, the time scales related to confining pressure $t_p$, shear rate $t_{dot{gamma}}$, particle stiffness $t_k$, gravity $t_g$ and cohesion $t_c$, respectively. We show that those phenomena collectively contribute to the rheology as multiplicative correction functions. While $t_{dot{gamma}}$ is large and thus little important for most of the data studied, it can increase the friction of flow in critical state, where the shear gradients are high. $t_g$ and $t_k$ are comparable to $t_p$ in the bulk, but become more or less dominant relative to $t_p$ at the extremes of the free surface and deep inside the bulk, respectively. We also measure the effect of strong wet cohesion on the flow rheology, as quantified by decreasing $t_c$. Furthermore, the proposed rheological model predicts well the shear thinning behavior both in the bulk and near the free surface; shear thinning develops to shear thickening near the free surface with increasing cohesion.
84 - Jie Zheng , Yi Xing , Ye Yuan 2021
Combining X-ray tomography with simultaneous shear force measurement, we investigate shear-induced granular avalanches using spherical particles with different surface roughness. We find that systems consisting of particles with large surface roughne ss display quasi-periodic avalanches interrupted by crackling-like small ones. In contrast, systems consisting of particles with small roughness display no detectable avalanches. The stress drop of quasi-periodic avalanche shows a linear relation with the correlation length of particle non-affine displacement, suggesting that roughness enhances inter-particle locking and hence particle-level dynamic correlation length. However, the nonaffine displacement is two orders of magnitude smaller than particle size, indicating that stress is mainly released on the length scale of roughness. The correlation length of non-affine displacements abruptly increases when a quasi-periodic avalanche occurs, suggesting that quasi-periodic avalanches can be interpreted as a spinodal nucleation event in a first-order phase transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا