ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards a general(ized) shear thickening rheology of wet granular materials under small pressure

74   0   0.0 ( 0 )
 نشر من قبل Sudeshna Roy Ms.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the rheology of dry and wet granular materials in the steady quasistatic regime using the Discrete Element Method (DEM) in a split-bottom ring shear cell with focus on the macroscopic friction. The aim of our study is to understand the local rheology of bulk flow at various positions in the shear band, where the system is in critical state. The general(ized) rheology has four dimensionless control parameters that relate the time scales of five significant phenomena, namely, the time scales related to confining pressure $t_p$, shear rate $t_{dot{gamma}}$, particle stiffness $t_k$, gravity $t_g$ and cohesion $t_c$, respectively. We show that those phenomena collectively contribute to the rheology as multiplicative correction functions. While $t_{dot{gamma}}$ is large and thus little important for most of the data studied, it can increase the friction of flow in critical state, where the shear gradients are high. $t_g$ and $t_k$ are comparable to $t_p$ in the bulk, but become more or less dominant relative to $t_p$ at the extremes of the free surface and deep inside the bulk, respectively. We also measure the effect of strong wet cohesion on the flow rheology, as quantified by decreasing $t_c$. Furthermore, the proposed rheological model predicts well the shear thinning behavior both in the bulk and near the free surface; shear thinning develops to shear thickening near the free surface with increasing cohesion.

قيم البحث

اقرأ أيضاً

The rheology of cohesive granular materials, under a constant pressure condition, is studied using molecular dynamics simulations. Depending on the shear rate, pressure, and interparticle cohesiveness, the system exhibits four distinctive phases: uni form shear, oscillation, shear-banding, and clustering. The friction coefficient is found to increase with the inertial number, irrespective of the cohesiveness. The friction coefficient becomes larger for strong cohesion. This trend is explained by the anisotropies of the coordination number and angular distribution of the interparticle forces. In particular, we demonstrate that the second-nearest neighbors play a role in the rheology of cohesive systems.
We report on experiments that probe the stability of a two-dimensional jammed granular system formed by imposing a quasistatic simple shear strain $gamma_{rm I}$ on an initially stress free packing. We subject the shear jammed system to quasistatic c yclic shear with strain amplitude $deltagamma$. We observe two distinct outcomes after thousands of shear cycles. For small $gamma_{rm I}$ or large $deltagamma$, the system reaches a stress-free, yielding state exhibiting diffusive strobed particle displacements with a diffusion coefficient proportional to $deltagamma$. For large $gamma_{rm I}$ and small $deltagamma$, the system evolves to a stable state in which both particle positions and contact forces are unchanged after each cycle and the response to small strain reversals is highly elastic. Compared to the original shear jammed state, a stable state reached after many cycles has a smaller stress anisotropy, a much higher shear stiffness, and less tendency to dilate when sheared. Remarkably, we find that stable states show a power-law relation between shear modulus and pressure with an exponent $betaapprox 0.5$, independent of $deltagamma$. Based on our measurements, we construct a phase diagram in the $(gamma_{rm I},deltagamma)$ plane showing where our shear-jammed granular materials either stabilize or yield in the long-time limit.
202 - Abdoulaye Fall 2010
We study the emergence of shear thickening in dense suspensions of non-Brownian particles. We combine local velocity and concentration measurements using Magnetic Resonance Imaging with macroscopic rheometry experiments. In steady state, we observe t hat the material is heterogeneous, and we find that that the local rheology presents a continuous transition at low shear rate from a viscous to a shear thickening, Bagnoldian, behavior with shear stresses proportional to the shear rate squared, as predicted by a scaling analysis. We show that the heterogeneity results from an unexpectedly fast migration of grains, which we attribute to the emergence of the Bagnoldian rheology. The migration process is observed to be accompanied by macroscopic transient discontinuous shear thickening, which is consequently not an intrinsic property of granular suspensions.
390 - Qing Xu , Ashish V. Orpe , 2007
We investigate the dynamics of a partially saturated grain-liquid mixture with a rotating drum apparatus. The drum is partially filled with the mixture and then rotated about its horizontal axis. We focus on the continous avalanching regime and measu re the impact of volume fraction and viscosity of the liquid on the dynamic surface angle. The inclination angle of the surface is observed to increase sharply to a peak and then decrease as a function of liquid volume fraction. The height of the peak is observed to increase with rotation rate. For higher liquid volume fractions, the inclination angle of the surface can decrease with viscosity before increasing. The viscosity where the minima occurs decreases with the rotation rate of the drum. Limited measurements of the flow depth were made, and these were observed to show only fractional changes with volume fraction and rotation speeds. We show that the qualitative features of our observations can be understood by analyzing the effect of lubrication forces on the timescale over which particles come in contact.
95 - Qin Xu , Abhinendra Singh , 2019
We experimentally investigate the rheology and stress fluctuations of granules densely suspended in silicone oil. We find that both thickening strength and stress fluctuations significantly weaken with oil viscosity $eta_0$. Comparison of our rheolog ical results to the Wyart-Cates model for describing different dynamic jamming states suggests a transition from frictional contacts to lubrication interactions as $eta_0$ increases. To clarify the contribution from viscous interactions to the rheology, we systematically measure stress fluctuations in various flow states. Reduction of stress fluctuations with $eta_0$ indicates that a strong lubrication layer greatly inhibits force correlations among particles. Measuring stress fluctuations in the strong shear thickening regime, we observe a crossover from asymmetric Gamma to symmetric Gaussian distributions and associated with it a decrease of lateral (radial) correlation length $xi$ with increasing shear rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا