ترغب بنشر مسار تعليمي؟ اضغط هنا

The Thomson scattering cross section in a magnetized, high density plasma

175   0   0.0 ( 0 )
 نشر من قبل Archie Bott
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the Thomson scattering cross section in a non-relativistic, magnetized, high density plasma -- in a regime where collective excitations can be described by magnetohydrodynamics. We show that, in addition to cyclotron resonances and an elastic peak, the cross section exhibits two pairs of peaks associated with slow and fast magnetosonic waves; by contrast, the cross section arising in pure hydrodynamics possesses just a single pair of Brillouin peaks. Both the position and the width of these magnetosonic-wave peaks depend on the ambient magnetic field and temperature, as well as transport and thermodynamic coefficients, and so can therefore serve as a diagnostic tool for plasma properties that are otherwise challenging to measure.

قيم البحث

اقرأ أيضاً

Plasma properties inside a hydrogen-filled capillary discharge waveguide were modeled with dissipative magnetohydrodynamic simulations to enable analysis of capillaries of circular and square cross-sections implying that square capillaries can be use d to guide circularly-symmetric laser beams. When the quasistationary stage of the discharge is reached, the plasma and temperature in the vicinity of the capillary axis has almost the same profile for both the circular and square capillaries. The effect of cross-section on the electron beam focusing properties were studied using the simulation-derived magnetic field map. Particle tracking simulations showed only slight effects on the electron beam symmetry in the horizontal and diagonal directions for square capillary.
Narrow bandwidth, high energy photon sources can be generated by Thomson scattering of laser light from energetic electrons, and detailed control of the interaction is needed to produce high quality sources. We present analytic calculations of the en ergy-angular spectra and photon yield that parametrize the influences of the electron and laser beam parameters to allow source design. These calculations, combined with numerical simulations, are applied to evaluate sources using conventional scattering in vacuum and methods for improving the source via laser waveguides or plasma channels. We show that the photon flux can be greatly increased by using a plasma channel to guide the laser during the interaction. Conversely, we show that to produce a given number of photons, the required laser energy can be reduced by an order of magnitude through the use of a plasma channel. In addition, we show that a plasma can be used as a compact beam dump, in which the electron beam is decelerated in a short distance, thereby greatly reducing radiation shielding. Realistic experimental errors such as transverse jitter are quantitatively shown to be tolerable. Examples of designs for sources capable of performing nuclear resonance fluorescence and photofission are provided.
The average-atom model is applied to study Thomson scattering of x-rays from warm-dense matter with emphasis on scattering by bound electrons. Parameters needed to evaluate the dynamic structure function (chemical potential, average ionic charge, fre e electron density, bound and continuum wave-functions and occupation numbers) are obtained from the average-atom model. The resulting analysis provides a relatively simple diagnostic for use in connection with x-ray scattering measurements. Applications are given to dense hydrogen, beryllium, aluminum and titanium plasmas. In the case of titanium, bound states are predicted to modify the spectrum significantly.
The total number of electrons in a classical microplasma can be non-intrusively measured through elastic in-phase coherent microwave scattering (CMS). Here, we establish a theoretical basis for the CMS diagnostic technique with an emphasis on Thomson and collisional scattering in short, thin unmagnetized plasma media. Experimental validation of the diagnostic is subsequently performed via linearly polarized, variable frequency microwave scattering off laser induced air-based microplasmas with diverse ionization and collisional features. Namely, conducted studies include a verification of short-dipole-like radiation behavior, plasma volume imaging via intensified charge-coupled device (ICCD) photography, and measurements of relative phases, total scattering cross sections, and total number of electrons $N_e$ in the generated plasma filaments following absolute calibration using a dielectric scattering sample. Findings of the paper suggest an ideality of the diagnostic in the Thomson free-electron regime - where a detailed knowledge of plasma and collisional properties (which are often difficult to accurately characterize) is unnecessary to extract $N_e$ from the scattered signal.
The primary purpose of the collective Thomson scattering (CTS) diagnostic at ITER is to measure the properties of fast-ion populations, in particular those of fusion-born $alpha$-particles. Based on the present design of the diagnostic, we compute an d fit synthetic CTS spectra for the ITER baseline plasma scenario, including the effects of noise, refraction, multiple fast-ion populations, and uncertainties on nuisance parameters. As part of this, we developed a model for CTS that incorporates spatial effects of frequency-dependent refraction. While such effects will distort the measured ITER CTS spectra, we demonstrate that the true $alpha$-particle densities can nevertheless be recovered to within ~10% from noisy synthetic spectra, using existing fitting methods that do not take these spatial effects into account. Under realistic operating conditions, we thus find the predicted performance of the ITER CTS system to be consistent with the ITER measurement requirements of a 20% accuracy on inferred $alpha$-particle density profiles at 100 ms time resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا