ترغب بنشر مسار تعليمي؟ اضغط هنا

Plasma Equilibrium inside Various Cross-Section Capillary Discharges

241   0   0.0 ( 0 )
 نشر من قبل Stepan Bulanov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Plasma properties inside a hydrogen-filled capillary discharge waveguide were modeled with dissipative magnetohydrodynamic simulations to enable analysis of capillaries of circular and square cross-sections implying that square capillaries can be used to guide circularly-symmetric laser beams. When the quasistationary stage of the discharge is reached, the plasma and temperature in the vicinity of the capillary axis has almost the same profile for both the circular and square capillaries. The effect of cross-section on the electron beam focusing properties were studied using the simulation-derived magnetic field map. Particle tracking simulations showed only slight effects on the electron beam symmetry in the horizontal and diagonal directions for square capillary.

قيم البحث

اقرأ أيضاً

We calculate the Thomson scattering cross section in a non-relativistic, magnetized, high density plasma -- in a regime where collective excitations can be described by magnetohydrodynamics. We show that, in addition to cyclotron resonances and an el astic peak, the cross section exhibits two pairs of peaks associated with slow and fast magnetosonic waves; by contrast, the cross section arising in pure hydrodynamics possesses just a single pair of Brillouin peaks. Both the position and the width of these magnetosonic-wave peaks depend on the ambient magnetic field and temperature, as well as transport and thermodynamic coefficients, and so can therefore serve as a diagnostic tool for plasma properties that are otherwise challenging to measure.
The scaling of reaction yields in light ion fusion to low reaction energies is important for our understanding of stellar fuel chains and the development of future energy technologies. Experiments become progressively more challenging at lower reacti on energies due to the exponential drop of fusion cross sections below the Coulomb barrier. We report on experiments where deuterium-deuterium (D-D) fusion reactions are studied in a pulsed plasma in the glow discharge regime using a benchtop apparatus. We model plasma conditions using particle-in-cell codes. Advantages of this approach are relatively high peak ion currents and current densities (0.1 to several A/cm^2) that can be applied to metal wire cathodes for several days. We detect neutrons from D-D reactions with scintillator-based detectors. For palladium targets, we find neutron yields as a function of cathode voltage that are over 100 times higher than yields expected for bare nuclei fusion at ion energies below 2 keV (center of mass frame). A possible explanation is a correction to the ion energy due to an electron screening potential of 1000+/-250 eV, which increases the probability for tunneling through the repulsive Coulomb barrier. Our compact, robust setup enables parametric studies of this effect at relatively low reaction energies.
High density ($.3 < bar{n}/10^{20}{rm m^{-3}} < .8$), low $q_a$ ($1.9<q_a<3.4$), Ohmic discharges from the ASDEX experiment is analysed statistically. Bulk parameter scalings and parameterised temperature and density profile shapes are presented. T he total plasma kinetic energy, assuming $T_i=T_e$, scales as $bar{n}^{ .54pm .01} {I_p}^{.90pm .04 } $ and is almost independent of $B_t$. The electron temperature profile peaking factor scales as ${T_0^{3/2}/<T^{3/2}>} = .94(pm.04){q_a}^{1.07pm.04}$ in close agreement with the assumption of classical resistive equilibrium. In the inner half of the plasma, the inverse fall-off length for both temperature and density has a strong dependence on $q_a$, with the temperature dependence being more pronounced. Outside the half radius, the $q_a$ dependence disappears but the density profile broadens near the edge with increasing plasma current.
A method of creating plasma channels with controllable depth and transverse profile for the guiding of short, high power laser pulses for efficient electron acceleration is proposed. The plasma channel produced by the hydrogen-filled capillary discha rge waveguide is modified by a ns-scale laser pulse, which heats the electrons near the capillary axis. This interaction creates a deeper plasma channel within the capillary discharge that evolves on a ns-time scale, allowing laser beams with smaller spot sizes than would otherwise be possible in the unmodified capillary discharge.
One of the most robust methods, demonstrated up to date, of accelerating electron beams by laser-plasma sources is the utilization of plasma channels generated by the capillary discharges. These channels, i.e., plasma columns with a minimum density a long the laser pulse propagation axis, may optically guide short laser pulses, thereby increasing the acceleration length, leading to a more efficient electron acceleration. Although the spatial structure of the installation is simple in principle, there may be some important effects caused by the open ends of the capillary, by the supplying channels etc., which require a detailed 3D modeling of the processes taking place in order to get a detailed understanding and improve the operation. However, the discharge plasma, being one of the most crucial components of the laser-plasma accelerator, is not simulated with the accuracy and resolution required to advance this promising technology. In the present work, such simulations are performed using the code MARPLE. First, the process of the capillary filling with a cold hydrogen before the discharge is fired, through the side supply channels is simulated. The main goal of this simulation is to get a spatial distribution of the filling gas in the region near the open ends of the capillary. A realistic geometry is used for this and the next stage simulations, including the insulators, the supplying channels as well as the electrodes. Second, the simulation of the capillary discharge is performed with the goal to obtain a time-dependent spatial distribution of the electron density near the open ends of the capillary as well as inside the capillary. Finally, to evaluate effectiveness of the beam coupling with the channeling plasma wave guide and electron acceleration, modeling of laser-plasma interaction was performed with the code INF&RNO
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا