ﻻ يوجد ملخص باللغة العربية
This paper presents a novel adaptive resonance theory (ART)-based modular architecture for unsupervised learning, namely the distributed dual vigilance fuzzy ART (DDVFA). DDVFA consists of a global ART system whose nodes are local fuzzy ART modules. It is equipped with the distinctive features of distributed higher-order activation and match functions, using dual vigilance parameters responsible for cluster similarity and data quantization. Together, these allow DDVFA to perform unsupervised modularization, create multi-prototype clustering representations, retrieve arbitrarily-shaped clusters, and control its compactness. Another important contribution is the reduction of order-dependence, an issue that affects any agglomerative clustering method. This paper demonstrates two approaches for mitigating order-dependence: preprocessing using visual assessment of cluster tendency (VAT) or postprocessing using a novel Merge ART module. The former is suitable for batch processing, whereas the latter can be used in online learning. Experimental results in the online learning mode carried out on 30 benchmark data sets show that DDVFA cascaded with Merge ART statistically outperformed the best other ART-based systems when samples were randomly presented. Conversely, they were found to be statistically equivalent in the offline mode when samples were pre-processed using VAT. Remarkably, performance comparisons to non-ART-based clustering algorithms show that DDVFA (which learns incrementally) was also statistically equivalent to the non-incremental (offline) methods of DBSCAN, single linkage hierarchical agglomerative clustering (HAC), and k-means, while retaining the appealing properties of ART. Links to the source code and data are provided. Considering the algorithms simplicity, online learning capability, and performance, it is an ideal choice for many agglomerative clustering applications.
This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a repre
Symbolic reasoning and neural networks are often considered incompatible approaches. Connectionist models known as Vector Symbolic Architectures (VSAs) can potentially bridge this gap. However, classical VSAs and neural networks are still considered
When data is of an extraordinarily large size or physically stored in different locations, the distributed nearest neighbor (NN) classifier is an attractive tool for classification. We propose a novel distributed adaptive NN classifier for which the
Active learning is widely used to reduce labeling effort and training time by repeatedly querying only the most beneficial samples from unlabeled data. In real-world problems where data cannot be stored indefinitely due to limited storage or privacy
Recurrent neural networks (RNNs) are widely used as a memory model for sequence-related problems. Many variants of RNN have been proposed to solve the gradient problems of training RNNs and process long sequences. Although some classical models have